US009403095B2

a2 United States Patent 10) Patent No.: US 9,403,095 B2
Dale et al. 45) Date of Patent: Aug. 2, 2016
(54) APPARATUSES, METHODS AND SYSTEMS 13/46 (2014.09); A63F 13/798 (2014.09);
FOR AN ONLINE GAME MANAGER HO4L 67/1002 (2013.01); A63F 2300/556
)) (2013.01); HO4L 67/38 (2013.01)
(71) Applicant: Zynga Inc., San Francisco, CA (US) (58) Field of Classification Search
. USPC oo 463/40-42; 709/226; 718/105
(72) Inventors: ?;;)(:L];Zizlsl?fkﬂsaanrf lFsrCaOI’IC?S‘i‘O(UCSX: See application file for complete search history.
(US)
(56) References Cited
(73) Assignee: Zynga Inc., San Francisco, CA (US)
U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this £.622.808 BI* 1/2014 Harrington e
patent is extended or adjusted under 35 2003/0069903 Al* 4/2003 Gupta ctal. ... 7077204
U.S.C. 154(b) by 223 days. 2007/0082738 Al* 4/2007 Fickieetal. ... 463/42
(21) Appl. No.: 13/975,115 * cited by examiner
(22) Filed: Aug. 23,2013 Primary Examiner — Ronald Laneau
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Martine Penilla Group, LL.P
US 2013/0344965 Al Dec. 26, 2013
57 ABSTRACT
Related U.S. Application Data The APPARATUSES, METHODS AND SYSTEMS FOR
(63) Continuation of application No. 12/894,280, filed on AN ONLINE GAME MANAGER (“OGM?”) transform user
Sep. 30, 2010, now Pat. No. 8,556,724. social graph and online behavioral pattern data inputs via
.. L. OGM components into optimized server computational load
(60) Provisional application No. 61/247,538, filed on Sep. reports. In one embodiment, the OGM may process a user
30, 2009. server migration request for a user by obtaining user social
(51) Int.Cl graph data identifying co-users, and social activity pattern
Gn 0;5 F 1 700 (2006.01) data associated with the user and the co-users. The OGM may
A63F 13/358 (201 4' o1) also obtain server load indices of servers associated with the
A63F 13/46 (2014'01) co-users, and server load analysis rules. By analyzing the
A63F 13/798 (201 4'01) server load indices using the server load analysis rules, the
HO04L 29/08 (200 6. o1) OGM may identify a subset of the servers as non-overloaded
A63F 13/30 (201 4' o1) transfer candidate servers. The OGM may calculate transfer
A63F 13/352 (201 4' o1) candidate server scores for the non-overloaded transfer can-
HO4L 29/06 (200 6. o1) didate servers using the user social graph data and the social
’ activity pattern data.
(52) US.CL
CPC ..o A63F 13/358 (2014.09); A63F 13/12

(2013.01); A63F 13/352 (2014.09); A63F

Social Networking
Server(s) 203
User Client
201a 202

User Client
20tb 202

Gaming
User Client Realm DB
201c 202¢ 212a

Gaming
Server(s) 2 11a

Communications Network 2 05

Server
Load DB
214

19 Claims, 24 Drawing Sheets

Gaming
Server(s) 2 11a

User Client
201d 202d

R

User (flient
20te 202

User Client
201 20

Load Batancing
Server(s) 213

_ SOCIAL GAMING NETWORK 200

EXAMPLE ONLINE GAME MANAGER TQPOLOGY

US 9,403,095 B2

Sheet 1 of 24

Aug. 2,2016

U.S. Patent

INFAFOYNYI IAVO INITNO 31dNVX3

qc0)
¢ A0

Wov | wo | T NP d
Jiostra | wrav | BT MDY
abes) abespy | Jequny sdnoio)

pozwgdo | ey | Jeneg puali

B0l k

L0 ENIE

US 9,403,095 B2

Sheet 2 of 24

Aug. 2, 2016

U.S. Patent

AD0T040L YFOVNYIN INVO INIING F1dWVX3

ET] ¢ (SHaneg
Huiwes

T1 ¢ (shenag

Buiouejeqg peo 71 e — —

fauejeq peo a0 oo AR 77

k0 7oe 180I9g g wieay 198
8§D sesn Bujwen

.ﬁv

qio¢
370¢ 910¢ 1980
?95 Bm: :
: T 7 JOMJaN SUOIEDILNWILIOD)
—Pp
BZ0Z ®l0¢
sy sesn

BL1 7 (S)ianiag TOZ (sheniag

Bugies Gz 2 BuppomioN feloog
80 uesy ¥02
Bunwes aq ydeso
<

¢ N9l

US 9,403,095 B2

Sheet 3 of 24

Aug. 2, 2016

U.S. Patent

YIAE L0 HEOVNYN 3WYD 3NONG 31AVE

{shanng

SARBUISHY

T
7300

Ve
£ 3000

¥ A {RI008 10 SISGUIBH

Lo

S0S

10 saun Amdaien

¥ ydeiny o
UCHUMOTY O SIBQHIEH K&

{shanias Bunuen

& dNOid

US 9,403,095 B2

Sheet 4 of 24

Aug. 2, 2016

U.S. Patent

MOTd YLVE HIOVNYIN JWNVD INFING ITdNVX3

L GZ 7 Josn TR EZl ¥
voav 1o} Janles g0 peo a0 wieay
8Q ydein Bujused 100G Buiwes
— Ayjusp)
Bl ¥ Jon0G

¥e ¥ oeis
U0ISSas

Buiouejeg peo 55 ddy

T0 ¥ Jenieg Buiwes

Buppiomen [e100g

Jonseg Buitues) \l/

Tz v Aenp) ddy
Buiwes) sjeleuss

E
TC ¥ wieas oju

Jasn sful (uoIssas
Jasn ajenuelsuy

7¢ v 1sanbai
dde Buiwes)

ZEvInding > |TZ 7 induyj

TO0FJesn (veis) Vi 3NOH

US 9,403,095 B2

Sheet 5 of 24

Aug. 2,2016

U.S. Patent

MOT4 VIVQ H3IOYNYIA IWVYO INITNO I1dINYX3

¥0¥
€q ydein

(10108 JojsuBs]
ee) Iy

\/_Namm Buiwen

0 ¥ siepuo saysues)
‘87591 BiRIBUSL)

~e’

15 ¥ s49pio

i8jsuel) Jasn

19jsuRl) ‘979814

Gy ¥ pesu
Buinueieq
peol
Asnusp|

BL} 7 JonI8g
Buioueieg peo

Py i SPEC)
{s)1on10

vy 247
43 peon g wiesy
Buiwes

IS Eep
JUBLILONAUT

62
W,
By 1 Jsenbal 7 T Janes
Jgjsued

auLIsieQ

v b awls
UoisSas
1aidiayy

/ X
e (Trindno> @E

T0 ¥ 495N

(veis)

sjels peoj pue aels
E uoISsas sjnduwion

dy 3¥NOld

US 9,403,095 B2

Sheet 6 of 24

Aug. 2,2016

U.S. Patent

MOT4 YivQ ¥3OVNYIN GWVO INITNO FTdWVXE

L1454
g0 wiesy

vy

gd peot
FETNETS

19 ¥ 18plo
2)8|8p U0ISSH

GG v ejels
UOISSaS Jas()

097 sieis
peo; ajnduios
‘UDISSSS ajeuiuLS]

¥C ¥ Jsenbal
B1BJS U0IsSag

{1onteg sejsues]
iGY Ea&%&/m.x.& ail v

josn 108fut ‘uoissas| 4OMIS Bujien
J9sN SjBjuUBISy

o EE

85 ¥ stels
UOISSS 108

ELL ¥y
Janieg Buiwen

¥9 v Jepio
9zoanun ddy

I % -
aci vy T «WW

gQ wjesy

Bunes

oY 3HNOI4

US 9,403,095 B2

Sheet 7 of 24

Aug. 2, 2016

U.S. Patent

MO Y1VQ dIOYNYI VO ININNO 31dINVX3

LLP
slejs peo
BN T I]
eNe)qily
Janiag bunuen
69 v sjels peoy
‘glels uoissas . 7 Elep
19pusy

mS&:@@\

G0 ¢ dde
azeaun

L9 ¥ 1nau)
awes)

6 07 ¢

907 eep Em:o

WBWLOIALT

E i4 S&:O

40 Wiesy
Buiues

Q P slels
U0ISS9S
“2&&5

@@ indy|

0 i%:@

piy
g4 pec

JEINELS

US 9,403,095 B2

Sheet 8 of 24

Aug. 2, 2016

U.S. Patent

006 ININOINOD (ISN) NOLLYILINI NOISSIS H3SN ITdWvX3

(s)uoneoydde
syiejep pepinoad 80 peol usifopesn i eyl
eAIES £;.> ad 19AJBS 10} SjiElep 10} UOISSaS |
0207 <——] 1oy00s ‘uojeaydde [H—{ o 1 G
uoljo / Jasn ajei8ud .
Janeg sjepdn JBAISS BPINGI] 9 ¢paiinbal
e T3 4 uotefielsuy SaA
01§
4 Janias Bupued suofieaidde «
‘o uoneoidde f——————— JUBHD Joj Aenb S[RIUapal0
JUBHO apiadi4 mﬁ_>oia ,mﬁm‘_mcmmu 108N nwwmswvm‘_ sjenuepaio
505 5T & 1UBKO / 188N LRG0 18sn ‘jsanbas
0% pajelsush apinoid
] 20§ »
1on9s Bunwed paynuap jusyo / Jesn .
| ¢ Siefuepalo
0} JonJos Buisueleq peo; f-a— syl IS0y 0] JoAI9S i {(suieb auijuo sehejdinw
| J8sSn plieA
WO JUBID | JOSN JajsuURL | Bunueb Amuap) 0% Ajanssew “6'e) uogesydde
_“. llllll === yomjau Jesn-inw
g _ 906 uiof 0] 1senbai gjeIBULY
019 jndut Al To¢C
‘Burpuey o3
G0S uels
N\ A A A
Y Y Y Y
8@ peo Jenes [y v - Janseg Buiwes Janieg Bupuejeq peo? sy / Jesn
80 ey Buied ¢ NoOH4

US 9,403,095 B2

Sheet 9 of 24

Aug. 2, 2016

U.S. Patent

009 LNINOJWOD (190) NOILLOYHILNI ONINYD ¥3SN T1dNvX3

sofsHels peoy alels/elep Jusorasn
1on18S (JUBHO/IBSD) UM [—] BpIS-IBAIES UM g(]

JaAlas

Jualo/Iesn

10} SOUSHE]S PEO] Buiweb 1o} s1ejs/ejep
4@ peo Janieg slepdn wieay Buiwes syepdn JUBIID/I3SN SPIADI
EE] (%]
djels/Elep
Solisfels peoj dpis-jusio pue elep
JanIBS ||BION0 juswiuonAus Buisn
8jeisuan) _ S1BIS/RIED JUBYO/IOSH
apis-1anIas ajeiaue
e i a3l
| WA
19AJ3S 10 9181S | BJEP
198N apis-1usKD apirid
1anes Buweb woy I)EIS/RIEP JUBlD/I8SH 0} Jaylaum auluwR}aQ
fsanb o asuodsai ut ejep | Buisn ejep uawuoiaue [579 »
1UBLULCHAUS JSN 8PIAOId lasn Joj Aienb ejgisusn
e — pajepdn ; paeiouab si
609 09 S1e)S / BIRp Jash apis-jual)
1onios Buseh 700 »
Mwwﬁmmﬁ Ui UONEDIUNUILIOD
10} U8l / 488N JOj Sjielap uoieaydde uaio
OIEIBUSD B iss0s / 103008 BpINOIY o nduy sepimosd saspy [
109 209 209
AN A A A J/
' h'd Y '
gQ peo senieg v - 90 Wieay Buies v - Jonlag Buiwen a0 /1SN
Vo NS

US 9,403,095 B2

Sheet 10 of 24

Aug. 2, 2016

U.S. Patent

009 ININOAWOD (19N} NOILLOYHILNI ONINYS H3ASN I1divX3

uoneoydde sk 1o}
9)EJS/BjEp JUBYD/IsN

Jash Jo} {0}e ‘uoneuwiue
‘so1ydedb paiopuss Ha)
indino uoiejeidialul

{Aeidsip “68) apinoid

19

fiesn papiacid-ionias

alels/e1ep Wsid

@l.v OPIS-I9NIES SPINOI] [———1 (15pua; 6'3) Jaudia]
) 919
AN A
Y ' Y Y
gQ peO] JanISS v ~ g0 Wwieay buwes y - Jonag Buiwes) sl /1980
g9 34Noid

US 9,403,095 B2

Sheet 11 of 24

Aug. 2, 2016

004 LNINOJINOD (1SN} NOLLYNINYIL NOISS3S ¥3SN T1dWvX3

U.S. Patent

WD [168N J0} Sjielap ‘ uoneoydde uofeoydde
UOISSAS /194008 BUISN | %mﬁ%ﬂﬁ% oMy : HOMIBU Jasn-finw
(1 peot iandeg siepdn Jona Buiee [FeSn-hinw SAes) SAE3| O} UOHEIYHOU
m. WED 0} uogesiou aptncid ‘sjelsusr)
T ajeiap “Anuapy L
S04 J8sN uieyqo 707 *
¥0Z €0Z - ,
(038 yo sboj ‘ueuniop
Janieeul seof ‘uolesydde
sesop “'Ba) uoyeoydde s
Ul LIO}OBIB}US SPUS Jas)
107
(S A A A
Y ' Y '
q(peo Janieg ¥ - gq wieay Bues v ~ Janlag Buwen Wwaln /1980

£ 34N9I4

US 9,403,095 B2

Sheet 12 of 24

Aug. 2, 2016

U.S. Patent

008 ININOJINOD (487111 1SINO3H ONIONYTVE QVOT CALYILINFYIASN FdWvX3

‘010 sugnod Bulooyssignol) sunnos Bunooysaignos
youney ‘sbessau swiopad ‘abesssiu
: >
(MO 1onteg Bues), 69) paiuap J1senbsi
paiusp Jsanbai ajeIousL) SUIBIQO JUSN0 / JosN)
608 018
ON
pijeA si1senbay Buiouejeq Zisenbe
peo| JaLlaym suislsq Buiaueeq peoj
708 808
sajns Bupoueleq peoy {010 ‘aluI} ‘ajep ‘uoseas ‘uoibal
paysenbai sepinold [— o peseq “6'a) Jenes Joj So
80 pe0 Jenisg Buioue|eq peoj Joj 1senbal sjelauss)
308) %00
BIBp PO} JOAIBS JUBIIO/IASN BU} JO JBAISS Juslo/i8sn Qljusifo / Jesn (Ui} 818y Yolo
Pa153nba1 SAPINCIT fetfirmmmrmmmmmeeeeeeeem oweb 1UBLIND € 0 PO} | Inoge/LLod SliE1ep e 9583]d ‘MO 1 50USLACXS Bulwed
001 oML 101155031 B1RIGUS 1sanbai Buiouejeq oA i, uo syoio Jesn “B8) ysenbal
aa peor S 3 | O peo] U0 Buouejeq peo; sapinoid Jusipd / Jesn
¥08 €08 208 108
AN A Al J
' h'd Y
a0 udeisy 7 gq peo 1aneg Bupuerg peo Wwaln 98N

Jen18g 1 Y — g uneay buwes V8 JUNOI

US 9,403,095 B2

Sheet 13 of 24

Aug. 2, 2016

U.S. Patent

008 INANOJINOD (HETN) 1SINDIY ONIONYTVE QVOT AILVILINIFYIASN T1dAVYX3

AN

@l‘

anjea Apoud
pue ‘adA] 1sanbal
Buiouejeq peo
g 1sonbay 0} ubissy

abessaui (, weyqoid inok
Xt 0} Bupjom aJe puE ‘esnes
B paynusp! aAey op, “6'8)

pa)danoe 1sanbai ojelsUs

—B

obessow
pajdeooe jsanbal
Buioueed peo|
SUIBIQO JusHD / 18SN)

A

118

€18

ananb Butoueeq
peoj] pajeniu-iosn
0} 1senbai Buoueleq
pEO| papiacid
Jusio / Jesn ppy

zi8

iZ2X]

JBMBG | ¥ — 8 Wwieay buiwes)

~
gq ydeio / gQ peoT

Y

Janeg Buouejeg peo

~
D /488N

g8 FdNoid

US 9,403,095 B2

Sheet 14 of 24

Aug. 2, 2016

U.S. Patent

006 ININOdWOD (HET1S) LSANDIY ONIONYTVE-QYOT 3 LYILINFYIAYES I1dNVX3

auinos Bupooyseignos
sutopad ‘abessaw
poluap 1senbal
Sueyqo Janias Bujles)

016

*0}8 suyno. Bugooyssignos
youne| ‘ebessauw -
paiusp 1sanbai sjrisULD)

pijea st 1sanbai Buloueleqg

»| DEO| 18L38UM aUIuLIaeQ Burouefeq peof

106 806
sajnu Huouered peoy (018 *oul) ‘ajep 'L0SEas ‘Uoiba
pejsenbal sepinoid <— o paseq B'a) Jonies Joj SO
g0 Pe0T JoM8S Buioue|eq peoj o) 1senbal ajesausg)
906 A %06
€iEp Jantss Jontas Bunueb 1noge h
PEGT JSMSS/IBNES l—— Buiweb sy jo peo; |«—— jWi0l] S|iBlep 158nbal |et——— Q1 janias ysanbal
paysanbai sapiacid 4 . Buioueieq peoj sepiaoid Jeaias Builies
10} 189nbat gjeteueY) Buouiejeq peoj UiLl0
g¢] peo JoAies
706 €06 206 106
AN A A J
Y Y Y
gq ydeisy ; g peo Joneg Buoueleg peot Jeniag Buiuen

Janiag /v ~ g wieay Buiwes ¥6 JHNDI4

US 9,403,095 B2

Sheet 15 of 24

Aug. 2, 2016

U.S. Patent

006 LNINOJWOD (4g7-1S) LSINDIY ONIDNYTYE-QYOT QILVILINFFHIAYIS 31dNvX3

peldeooe jsenbai ajeseuss)

lonses Buiueb
Buiissnbai Joj sbessaul

abessaw
padense jsenbsl
Buiouejeq peoj stiejqo
loasas Bujwes

anjen Ajuoud
pue ‘adf) 1senbay
Buioueieq peoy
g)senbai o} ubissy

@l'

£

b

ananb Buoueeq
PEO] paleiul
-l9Ales 0} jsenbal
Buouejeq peoy
papiaoid 1oAI8S ppY

116
\ Al

[4X]

|6

Y

80 ydess / g peo
19AI9G [¥ — (] Wiesy Buiwes)

Janiag Buiouejeg peo

Y
Jonsag Buiwes

g6 F4Naid

US 9,403,095 B2

Sheet 16 of 24

Aug. 2, 2016

U.S. Patent

000} LNINOJWOD (ME7-Q) 1SINDIY ONIONYTYE-QVYOT OILSONDVIT TTdINYXT

anjeA Ajuoud pue ananb Buinuejeq peol
> ‘adf; 1senbai Buioueieq 5 opsouBeip o) sjsenba
PEQ B (J] JoMRS Buioueleq peoj ppy
pauinjas yoea 1oj ubissy — I
— 90 01
s(| Jonies 00 !
paysenbal sapincid fg m
g4 peo Jensg | “
50T sojn Bupurjeq peoj Buisn siaaies |
Butuel peoj-ubiy / peproyan J0 S} |t — |
B Ajjuapt 0} solenb S10W IO SUO d)RIBUD)
€001
sejni Huoueleq peoj (018 ‘Wi ‘sjep ‘uosess ‘uotbay
pajsenbal sopinoid fe@———————————— U0 paseq “6'8) 18ASS 10} SBYN
dq peo Jenteg Butoueieq peoj 1o} 1sanbai gjelaueD)
00 T00r (s)
AN A
Y Y
gq ydeisy ; gq peol Jonag Buioueeg peo

J8AI8S | ¥ — g0 Wiesy Buiwen

01 F8Noid

US 9,403,095 B2

Sheet 17 of 24

Aug. 2, 2016

U.S. Patent

004} INANOOD {vHa 1) ¥OL1YOTHDOY 1SINDIY ONIONYTvE-aYOT FTdNYX3

(s)ananb jje wouj sjsenbal

Aioud 1s0ybiy jo sisenbad uel
‘sysenbal ajeoidnp sjeiep Ajjeuondp

007 a

sy Jenses ajeaydnp yim
sisanbai piooas ‘Ajiuept Ajjeuondo

g *

Buioueieq peo) jje s1ebaibby

<t

011 *

(s)enanb jsanbai
Buueeq peoj snsoubelp uiklgo

(o

0l

-

i

(s)enanb jsenbai Buipueeq
PEO| palBlliul-IanIos UG

anjea Ajuoud jo Japuo Buipusossap
uj sjsanbai Buloueeq peoj Wog

(8]

Ol

-

i

SO LY

(s)anenb 1sanbal
fulouefeq peo| pajeiul-esn URgO

10t

-

b 3dnoid

US 9,403,095 B2

Sheet 18 of 24

Aug. 2, 2016

U.S. Patent

00Z} LNINOJNOD (81S) ONIONYTVE QY01 HIAYIS F1dIYXI

1enles Buiued pajejdwios si Buiouejeq
pojodles Joj elep PEO| YDIUM 10} JOAIBS
peo; paueiqo Buisn gq ¢ Huiied pajosies 1o} erep
peoT Jeaseg ejepdn peoj pajepdn uelg
021 9021

ananb Suduefeq peol
woyy senses buiwed
P2]08}8s SAOLISY

s 818jdwioo

oN

HEM

= |

1oniss Buiwed pansjes

cocl

ou 10§ BUDUERY f- — — — IY@
peoj wiopad ‘aleniu)

80UB[Eq PEO) 0} JBNISS
Bunweh Amuapr ‘ananb

soines Bupueleq peoj
annbal 1By} S19A508

Buipueleq peo; syl ¢ Buuwsed jo enanb
woyj jsenbaj e 10898 Buouejeq peoj uLIG0
0¢t l0¢cl

¢l NSO

US 9,403,095 B2

Sheet 19 of 24

Aug. 2, 2016

U.S. Patent

00€} LNINOGWOD {1SDN) HIASNYHL HIAYIAS ONINYD H3SN I1dINvXT

JUBHD / J8sN PBJ0s|9s
Juslo / Jesn
joj Jsjsues senies | o | 6195168 10 JOISUEA
Jo sjieiap busn g Eﬂ.mm 0 Sjiejep ue
peoT JeAlseg slepdn 10 sjielep uedo
80 ¢l

80 peoT JBAIRS WO
felep peoj sonies Buiwued
pajepdn azdjeus ‘R0

Hem

U810 / Josn
pa102(as 10} I3jSuBH]
1onios uiopad oy

Vol

janias Buiueb
Jayjoue 0} JajSues
0} Jusljo / Jasn e 108j9g

sonsas Bunueh ay yum

PaYSHQE)SS SUOISSaS [S18%00S
YlIM SJUSHD / SIBSN J0 IS} UIBlG0

g

o
—

{-019 g1 peo Joniag ui
eiep Buizheue Ag ; Jansas Bunuel
J usi 7 Jasn wol “Ba) Janias
Buiweb e Joj papasu st Buouejeq
peoj jey} uonedipul uelqo

o

€0 €l

e

~

¢l F4Notd

US 9,403,095 B2

Sheet 20 of 24

Aug. 2, 2016

U.S. Patent

00%L ININOJINOD (WN) NOILLYEDIN ¥3SN F1dINvX3A

uoneaydde yiomau
40 8188100 PaYUEP!JO ST} |
1on18g BulBS) PBPEOUSAC
T -Uou 1o} Asenb sjesousg
(erep Aungoe
{016 sy Y — 19/J9S ‘0jR]S/elep JUalD/asn
Buikeyd sweb -6 o) erep ‘Blep Aaioe (enos ‘ydet jenos
Ajngoe y — JanIas ‘ajels Buisn "6-3) uoneoydde yomau jo
] BJEP JUSI2 / Josn ulejqo {s| s9sn B8} sio8n-00 Aynusp
80 vl 80 vl
- ! Wieas Buile {y - Jonos Bujwed {010 sawm
v Smm m,m W, ere O j0 | Bugsn “68) Awngoe “Ba) ejep
i uu_ L_me m w\,ow y R1ED Janss Buiweb ¢ Apnnoe eroos ‘ydesdb
SR / 1957 8piAQid 198N 30} Alanb ajeiousg 1BID0S 1881 LRG0
v EZ O »
I
des () so5n Buisn - 1OAIBS JoAIoS SjeuIS)E
m,o%o ge OQ 5 pue ‘soeuislul |y BiA 6ul <mm LD (0 U 0} 498N & Jo Jajsuel) (018 Jenies Buoue|eq
M&Omw_%m w gsw__ ¢ | “B°8) ydeb |eioos Jasn ‘ UE BWc: ma 10 1 peoj ‘1anag Buiies) ualD uasn Aq puewap
et piraid io} Aanb ejessuan Qi ai 190 -Uo / Ajjeoipouad / pasebbin-juans 69} slenIyl
09l e0 ¥l oyl 10vl
. AL A /
Y Y '
aq ydess) L100S 7 g prOT 1enlag Bunueleg peo tonteg Buiwesy [1usyn / Jesn)

Jomdg | Y — g0 wieay buiwes vol NOI

US 9,403,095 B2

Sheet 21 of 24

Aug. 2, 2016

U.S. Patent

00v1 LNANOJIOD {WN) NOILYYOIN ¥3SN JTdNYXT

¥-8d
wyeay Buies) woy >
U8 / Jasn pajsanbal
104 S1E1S / 12D Spnoid SuonoBIAIU ¥ - 60 Wieay ¥ - 60 wiesy
Bl vi JOAIBS-JUBID MBU BjaeSIp Buiuies) e paic)s ejep Bunen) wouy jusyo
‘91e1S JUBP [Josn 9zovly ™1 josn Jo} spybu sseaoe . / 198N JO 9BjS / Blep
0} UOHONASUI 3PIAOIH ‘q1 498N epiroid Jo} Asenb ajeisusn
TRT | AT}
g - JI9nI9s
10} 188nbal Jgjsues ———ripe osuodsa Jsanb;
_ apiaosd ‘ysenbar uego
\ 19sh epinoud ‘sjelous
g PECT JOMIBS WO J1asn sy Jojsuel} Il IR
S FEIES 0} (]| JonIBS papinoid sy}
pajsanhal apiroid > woy g-Jemeseauispg |
bl Lyl
AN A A J
Y Y '
ag ydeisy |e100g / 90 peo tenseg Bubueeg peon q - 18Aseg Buiies

JaAss 1 Y — gQ wiesy buwes gyl 3dNoI4

US 9,403,095 B2

Sheet 22 of 24

00%} LINBNOJINOD {N) NOILLYEDIN ¥3SN I1dNvX3

(das)

SUONOBIIUI 18AISS-JUSID BjgBus
‘3JB}S / BIEP JUBHD / Jasn 8ZasKuN
0 UOIONJSUI ‘JusifD / Jasn Jo}
Sjie}ap LOISSaS / 19400S MU SpIAOid

g - JonIss Yim
UOfIDEL} JOAIBS-IUBID
suibaq ‘9)els | ejep
S879BULN JUBYD | JOSN

A7 eyl

sl 7 Jasn 1oy (g
~ 19AJBS 1B SjiB}ap LIISSas / }8%008
PPe ‘Y — JONIBS JE UOISSaS/ 19400S
aj9jep “BH8) g peo Jenisg sjepdn

Aug. 2, 2016

U.S. Patent

9 ¥l
Jusip / Jasn sjielep
W8I0 / Jasn Bl / 198N J0j
10] UOISSBS 10} UOISSOS / 193008 pus 0} > LOISSBS [193008 LOISSES | Jop0S
. ¢ v ~ 1oAn18g Bupien WOV Jeisues ¢ .
{ 19%400S 91919Q M8U BjeIauen)
0] UOIIoNASUL 8pIAId Blep apinoid
Gyl 1A (42 A7
sl / J8sn Judlo / 188N
joj oje)s jejep ——| 10} SJEJS / BJEp
papinoid uRlgo papirosd 8101
0¥l A4
AN A A A J/
Y Y Y Y
sl /1880 gq peo g - jeneg Buiwes q - gQ wiesy Buiwen

/Y ~ tonieg buiwes Janag J janieg bupueleg peo

vl JdNoid

US 9,403,095 B2

Sheet 23 of 24

Aug. 2, 2016

U.S. Patent

0051 LNINOJIGD {SLS) NOLLOZTIS HIJSNVHL ¥IAYIS T1dWYXT

18jSUR) JoAIS 198N 10} 91008 DI IBAIBS
190Uy ypm piIonIas J08jag

¥

yi 6l A

ZM = 1yBiem pusiy Joaup
198G

B18jdwo

2100 ||

ssequsw ydedd

04l

depeacadh) , depeno suwm

. (WyBem pusyy 8
+ BI0OS I IOAIBS =
198

+ Jybromiasn09)
2J008 pf Jonles

b Gl

; diysuonejes
puaLy 19910

| = yBlem™puayyoaup

RETS

YIOM]BU [BID0S BIA
RYIOBULCS

LA = JyBtam™I8sn 00
188

(sinoy) depsno s
SUIUO BUILLIBIS(

| = WbBem 1esn 09
188

o
~—

« 850Gl

4 0%

b

(somaior) depono~adhy
BUILO BUILLIBEQ

Jasn-00 e Joojeg

[en)

[

-~

'

» 205t

b

Ajwopues pi1onies
ubisse Jo ‘(ajqejieae
11) Jequisw ydesb
{BI00S 10} P JOAlDS pul4

SIonlas ajepipued
Jajsuey ual 7 Jesn
B JO $1a8n-00 Ajguap)

b

-

60 G}

-

1081

G N2

U.S. Patent Aug. 2, 2016 Sheet 24 of 24 US 9,403,095 B2

FIGURE 16
. Crypto Device
Computer Systemization 16 02 17, 1626
000000000 CWP‘{Ograpth .
Clock 9 o1 4 ||Processor Interface Peripheral
q CPU fepaps! 16 27
o o L8 Blices Input Output
0 o |22 nput Outpu
1 22222222 M interface (4O)
v j 16 08
Power » System Bus [¢— | Interface Bus
16 86 » 1604 | T 16 07
Network Interface
R B SEE 16 10
E A 4 \ 4
il RaM || ROM
H Storage Interface
{1605 || 1606 e 00 Communications

Network 16 13

// Storage Device \

i OGM component 16 35

OGM Database 1619\ :

| [623die 2atfie 23cfio 23dfie 23]

|| (1623116 2316 23016 23i[16 23] o~ — I
623k ——— ———
s — e) [[£t 18 [] |
i

: 1619 | 1619f | 1619q | 161%h

|| I— Jser Intertace 10 1619 | 1619 | 1619 | 16191 | ||};
: Web Browser 16 18 16 19m

Cryptographic Server 16 20

[Mail Server 16 21] Mail Client 1622 | ~~—____ |

Example Online Game Manager (OGM) Controller 16 01

US 9,403,095 B2

1

APPARATUSES, METHODS AND SYSTEMS
FOR AN ONLINE GAME MANAGER

CLAIM OF PRIORITY

This is a continuation of U.S. application Ser. No. 12/894,
280, filed on Sep. 30, 2010, entitled “APPARATUSES,
METHODS AND SYSTEMS FOR AN ONLINE GAME
MANAGER”, which in turn claims priority under 35 USC
§119 for U.S. provisional patent application Ser. No. 61/247,
538 filed Sep. 30, 2009, entitled “IMPROVED MAINTE-
NANCE OF ONLINE GAME? The entire contents of the
aforementioned applications are herein expressly incorpo-
rated by reference.

FIELD

The present invention is directed generally to apparatuses,
methods, and systems for multi-user social Internet applica-
tions, and more particularly, to APPARATUSES, METHODS
AND SYSTEMS FOR AN ONLINE GAME MANAGER.

BACKGROUND

Users may interact online with each other via multi-user
applications for Internet-based social networks. Users may
suffer a reduced quality of user experience if the server sys-
tem providing them an application service is overloaded.
Server systems may distribute the computational load asso-
ciated with providing application services to users across a
plurality of server computers to attempt improving user expe-
rience quality.

SUMMARY

The APPARATUSES, METHODS AND SYSTEMS FOR
AN ONLINE GAME MANAGER (“OGM”) transform user
social graph and online behavioral pattern data inputs via
various OGM components into optimized server computa-
tional load reports.

In one embodiment, the OGM may process a user server
migration request for a user by obtaining user social graph
data identifying application co-users, and social activity pat-
tern data associated with the user and the co-users. The OGM
may also obtain server load indices of servers associated with
the co-users, and server load analysis rules. By analyzing the
server load indices using the server load analysis rules, the
OGM may identify a subset of the servers as non-overloaded
transfer candidate servers. The OGM may calculate transfer
candidate server scores for the non-overloaded transfer can-
didate servers using the user social graph data and the social
activity pattern data. Also, the OGM may select one of the
non-overloaded transfer candidate servers for migrating the
user based on the transfer candidate server scores, and
migrate data associated with the user to the selected non-
overloaded transfer candidate server.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying appendices and/or drawings illustrate
various non-limiting, exemplary, inventive aspects in accor-
dance with the present disclosure:

FIG. 1 is of a block diagram illustrating exemplary online
game management in some embodiments of the Online Game
Manager (“OGM”);

FIG. 2 is of a block diagram illustrating various exemplary
OGM components and/or affiliated entities involved in server

10

15

20

25

30

35

40

45

50

55

60

65

2

load balancing based on a user’s social graph and online
behavior in some embodiments of the OGM,;

FIG. 3 is of a block diagram illustrating exemplary online
game manager criteria utilized in some embodiments of the
OGM;

FIGS. 4A-D are of data flow diagrams illustrating exem-
plary aspects of server load balancing based on a user’s social
graph and online behavior in some embodiments of the OGM;

FIG. 5 is of a logic flow diagram illustrating exemplary
aspects of initiation of a user application session with the
OGM in some embodiments of the OGM, e.g., a user session
initiation (“USI”) component;

FIGS. 6A-B are of logic flow diagrams illustrating exem-
plary aspects of implementing user gaming interactions with
the OGM within a user application session in some embodi-
ments of the OGM, e.g., a user gaming interaction (“UGI”)
component;

FIG. 7 is of a logic flow diagram illustrating exemplary
aspects of termination of a user application session with the
OGM in some embodiments of the OGM, e.g., a user session
termination (“UST”) component;

FIGS. 8A-B are of logic flow diagrams illustrating exem-
plary aspects of processing a user-initiated server load bal-
ancing request in some embodiments of the OGM, e.g., a
user-initiated load balancing request (“UI-LBR”) compo-
nent;

FIGS. 9A-B are of logic flow diagrams illustrating exem-
plary aspects of processing a gaming server-initiated server
load balancing request in some embodiments of the OGM,
e.g., a server-initiated load balancing request (“SI-LBR”)
component;

FIG. 10 is of a logic flow diagram illustrating exemplary
aspects of processing a self-diagnostic server load balancing
request in some embodiments of the OGM, e.g., a diagnostic
load balancing request (“D-LBR”) component;

FIG. 11 is of a logic flow diagram illustrating exemplary
aspects of processing server load balancing requests initiated
by various OGM components and/or affiliated entities in
some embodiments of the OGM, e.g., a load-balancing
request aggregator (“LBRA”) component;

FIG. 12 is of a logic flow diagram illustrating exemplary
aspects of processing server load balancing requests based on
a user’s social graph and online behavior in some embodi-
ments of the OGM, e.g., a server load balancing (“SLB”)
component;

FIG. 13 is of a logic flow diagram illustrating exemplary
aspects of transferring users of a gaming server to other
gaming servers based on a user’s social graph and online
behavior in some embodiments of the OGM, e.g., a user
gaming server transfer (“UGST”) component;

FIGS. 14A-C are of logic flow diagrams illustrating exem-
plary aspects of migrating a user from one server to another
based on a user’s social graph and online behavior in some
embodiments of the OGM, e.g., a user migration (“UM”)
component;

FIG. 15 is of a logic flow diagram illustrating exemplary
aspects of selecting a server to which to migrate a user based
on the user’s social graph and online behavior in some
embodiments of the OGM, e.g., a server transfer selection
(“STS”) component; and

FIG. 16 is of a block diagram illustrating embodiments of
the OGM controller.

The leading number of each reference number within the
drawings indicates the figure in which that reference number
is introduced and/or detailed. As such, a detailed discussion
ofreference number 101 would be found and/or introduced in
FIG. 1. Reference number 201 is introduced in FIG. 2, etc.

US 9,403,095 B2

3
DETAILED DESCRIPTION

Online Game Manager (OGM)

FIG. 1 is of a block diagram illustrating exemplary online
game management in some embodiments of the Online Game
Manager (“OGM”). In some implementations, a user of a
multi-user online game, e.g., user A 101a, may play online
games with his friends, e.g., user Q 101e and user R 101f.
Similarly, a user P 1014 may have friends user] 1015 and user
K 101¢, and user P may play online games with users J and K.
In some implementations, a plurality of gaming servers may
operate to provide the gaming application for (hereinafter
“host”) the user friend groups {A, Q, R} and {P, J, K}. For
example, gaming servers 111a and 1115 may host the user
friend groups. In some implementations, user friend groups
may play online games with each other at specific times
during the day. For example, user friend group {P, J, K} may
usually play online games with each other at times indicated
by Clock 1 (102a). As another example, user friend group {A,
Q, R} may usually play online games with each other at times
indicated by Clock 2 (1025).

In some implementations, users within a single user friend
group may be hosted by different gaming servers, while play-
ing the same game with each other. For example, users A, Q
and R may be playing the same game with each other. How-
ever, gaming server ma may be hosting user A initially, while
gaming server 1115 may be hosting users Q and R initially. In
some implementations, a gaming server (e.g., 111a-b) may
host users from a plurality of user groups. For example,
gaming server ma may be hosting user A from group {A, Q,
R} and uvsers P, J and K from group {P, J, K}. The gaming
server may perform computations necessary to provide gam-
ing services for each of its hosted users, and provide
responses to various queries provided by the hosted users. In
some implementations, a hosted user may observe gaming
server response times for each of the user’s queries that are
dependent on the number of users hosted by the gaming
server when the user presents the queries to the gaming server.
The gaming server response times observed by a user hosted
by a gaming server may increase as the number of users
hosted by the gaming server increases, due to increased bur-
den on the server. In some implementations, a gaming server
may host a large enough number of users such that a user
hosted by the gaming server experiences an unsatisfactorily
long response time from the gaming server.

In some implementations, the OGM may identify an over-
loaded gaming server. For example, with reference to FIG. 1,
the OGM may identify that gaming server ma is overloaded
while hosting users A, P, J and K. In such implementations,
the OGM may transfer one or more users hosted by the
overloaded gaming server to other gaming servers, so as so
reduce the load experienced by the currently overloaded gam-
ing server. For example, the OGM may transfer user A away
from gaming server 111a. In some implementations, the
OGM may identify a transfer candidate gaming server to
which to transfer the user. For example, the OGM may iden-
tify gaming server 1115 as a transfer candidate gaming server
to which to transfer user A, away from gaming server 111a. In
some implementations, the OGM may identify transfer can-
didate gaming servers based on the social network and online
behavioral activities of the user. For example, the OGM may
identify gaming server 1115 as a transfer candidate gaming
server to host user A based on user A’s friendship with users
Q and R already hosted by gaming server 1115, and/or based
on the observation that user A’s gaming times overlap with
those of users Q and R already hosted by gaming server 1115.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 is of a block diagram illustrating various exemplary
OGM components and/or affiliated entities involved in server
load balancing based on a user’s social graph and online
behavior in some embodiments of the OGM. In some imple-
mentations, a plurality of users, e.g., 201a-f, may be utilizing
a social gaming network, e.g., 200. A user may interact with
the social gaming network via one or more client devices
(“clients™), e.g., 202a-f. For example, the user may provide
input into the client device (e.g., mouse click, keyboard entry,
touch screen input, multi-touch input, voice commands,
human computer interfacing mechanisms, and/or the like).
The clients may communicate with each other and/or other
entities affiliated with the OGM via a communications net-
work, e.g., 205. For example, the communications network
may be a packet-switched computer network. The users may
be utilizing a social networking service provided by a social
networking server, e.g., 203, to interact with each other. For
example, auser may provide an input into his or her client; the
client may in response send a message via the communica-
tions network to the social networking server; and the social
networking server may update a user profile, save the mes-
sage provided by the user to a database, and/or send mess-
age(s) to other user(s). The social gaming network may
include a social graph database, e.g., 204, which may store
user relationships, social user profiles, user messages, and/or
like user social data. The users may engage in online games
with each other. For example, the users and/or clients may
interact via the communications network with one or more
gaming servers, e.g., 211a-b. The gaming servers may host
one or more gaming applications, and may perform the com-
putations necessary to provide the gaming features to the
users and/or clients. One or more gaming realm databases,
e.g., 212a-b, may store data related to the gaming services,
such as the gaming applications/modules, virtual gaming
environment (“realm”) data, user gaming session data, user
scores, user virtual gaming profiles, game stage levels, and/or
the like. The gaming servers may utilize the data from the
gaming realm databases to perform the computations related
to providing gaming services for the users. In some imple-
mentations, a server load database, e.g., 2145, may store
gaming server load statistics such as computational load,
server responses times, and/or the like, of the gaming servers.
The social gaming network may include a load balancing
server, e.g., 213. In some implementations, the load balancing
server may communicate with the gaming servers, server load
database, social graph database, and/or other OGM-affiliated
entities to provide user social relationship and online behav-
ior-sensitive server load balancing.

FIG. 3 is of a block diagram illustrating exemplary online
game manager criteria utilized in some embodiments of the
OGM. In some implementations, users, e.g., 301a-j, may
establish online social relationships with each other. For
example, a user may indicate on an online social networking
service that one or more other users are friends. The social
networking service may generate a social graph of all users
connected to that user by way of relationships formed
between the users of the social networking service. For
example, with reference to FIG. 3, social graph A may include
users 301a-¢ (“A {301a-¢}”); social graph B may include
users 301/-k (“B {301/-%}); and social graph C may include
users 301i-j (“C {301i-/}”). U.S. provisional application Ser.
No. 61/179,345, entitled “Direct Embedding of Games into
Third Party Websites,” and United States non-provisional
application Ser. No. 12/778,956, entitled “Embedding of
Games into Third Party Websites™ disclose various aspects
and uses of social graphs. The entire contents of these appli-
cations are herein expressly incorporated by reference. In

US 9,403,095 B2

5

some implementations, members of a common social graph
may be hosted by different gaming servers. For example,
users A{301a-b} of social graph A are hosted by gaming
server 311a, while user A{301c} is hosted by gaming server
3115 and users A{301d-e} are hosted by gaming server 311c.
As another example, B{301/} is hosted by gaming server
3114 while B{301g-/4} are hosted by gaming server 311e.

In some implementations, the OGM may perform server
load balancing based on social graph data of the users of the
OGM. For example, the OGM may identify that server 3114
is overloaded. In response, the OGM may decide to transfer
user B{301/} away from gaming server 311d to reduce the
computational load of gaming server 311d. For example, the
OGM may identify gaming servers 311e and 311/ as transfer
candidate gaming servers. The OGM may analyze the extent
of the relationship that the current users of the transfer can-
didate gaming servers have with the transferred user B{301/}.
For example, the OGM may determine that co-members of
social graph B, users B{301g-4} hosted on gaming server
311e, have a stronger relationship with B{301/} than mem-
bers of social graph C, users C{301i-;} hosted on gaming
server 311f. In some implementations, the OGM may prefer-
entially transfer a user to a gaming server that hosts users who
exhibit stronger relationships (e.g., as evidenced by the social
graphs connecting the users) to the transferred user. For
example, in the configuration described above and illustrated
in FIG. 3, the OGM may decide to transfer user B{301/} from
gaming server 311dto gaming server 311e rather than gaming
server 311/, because user B{301/} is determined to have a
closer relation to the users B{301g-#} hosted by gaming
server 311e, than users C{301i-j} hosted by gaming server
3117

In some implementations, the OGM may perform server
load balancing based on online gaming and/or social behavior
patterns of the users of the OGM. For example, the OGM may
identify that server 3115 is overloaded. In response, the OGM
may decide to transfer user A{301c} away from gaming
server 3115 to reduce the computational load of gaming
server 3115. For example, the OGM may identity gaming
servers 311a and 311c as transfer candidate gaming servers.
The OGM may utilize the game play times of the users asso-
ciated with the transfer candidate gaming servers who are also
members of the same social graph as A{301c}. For example,
the OGM may analyze the game play times of users A{301a-
b} of gaming server 311a and the game play times of users
A{301d-¢} of gaming server 3115, to decide whether to trans-
fer A{301c} to gaming server 311a or 3115. With reference to
FIG. 3, the typical game play times of users A{301a-b} are
depicted by clock 1 (303a), the typical game play times of
users A{301d-¢} are depicted by clock 2 (3034), and the
typical game play times of users B{301g-4} and C{301i-/}
are depicted by clock 3 (303¢). Further, although user
A{301c} is hosted by gaming server 3115, A{301c}’s typical
game play times coincide with those of users A{301d-¢}
hosted by gaming server 311c—depicted by clock 2 (3035).
In some implementations, the OGM may preferentially trans-
fer a user to a gaming server that hosts user social graph
co-members who exhibit game play times similarto the trans-
ferred user. For example, in the configuration described above
and illustrated in FIG. 3, the OGM may decideto transfer user
A{301c¢} from gaming server 3115 to gaming server 311c¢
rather than gaming server 311a, because user A{301c}’s
game play times are closer to those of users A{301d-e¢} hosted
by gaming server 311c, than users A{301a-b} hosted by
gaming server 311a.

FIGS. 4A-D are of data flow diagrams illustrating exem-
plary aspects of server load balancing based on a user’s social

25

35

40

45

50

55

60

65

6

graph and online behavior in some embodiments of the OGM.
In some implementations, a user 401 may wish to interact
with a social gaming network, e.g., 200. The user may utilize
a client device, e.g., 402, to interact with the social gaming
network. For example, the user may provide input, e.g., 421,
into the client device. In various implementations, the user
input may include, but not be limited to: keyboard entry,
mouse clicks, depressing buttons on a joystick/game console,
voice commands, single/multi-touch gestures on a touch-
sensitive interface, touching user interface elements on a
touch-sensitive display, and/or the like. The client may com-
municate with the social gaming network, and may provide
output, e.g., 434, for the user. For example, the client may
provide output including, but not limited to: sounds, music,
audio, video, images, tactile feedback, vibration alerts (e.g.,
on vibration-capable client devices such as a smartphone
etc.), and/or the like.

In some implementations, the user may provide input, e.g.,
421, to the client device indicating that the user desires to
utilize an application (e.g., a game) provided by the social
gaming network. In response, the client may generate a gam-
ing app request, and provide the gaming app request, e.g., 422
to a load balancing server, e.g., 411a. For example, a browser
application executing on the client may provide, on behalf of
the user, a (Secure) Hypertext Transfer Protocol (“HTTP(S)”)
GET message for a HyperText Markup Language (“HTML”)
page, wherein the HTML page includes JavaScript™ com-
mands to embed an Adobe® Flash object including an appli-
cation for the user in the HTML page. An exemplary
HTTP(S) GET message that may be provided by a browser
executing on the client to request an HTML page is provided
below:

GET /mafiawars.html HTTP /1.1
From: username@appserver.com
Host: www.appserver.com
User-Agent: Mozilla/4.0

In response to the app request, the load balancing server
may attempt to identify a gaming server within the social
gaming network to which to redirect the gaming app request
received from the client. In some implementations, the load
balancing server may perform user social relationship and
online behavior-sensitive server load balancing. In such
implementations, the load balancing server may identify a
gaming server to which to redirect the gaming app request
based on the loads being experienced (and/or that will be
experienced) by the gaming servers and the social-gaming
characteristics of the user for whom the load balancing server
received gaming app request. The load balancing server may
generate a query for server loads of the gaming servers, and
provide the server load query to a server load database, e.g.,
414. In response to the query, the server load database may
provide the requested server load data records, which may
include fields such as, but not limited to: a gaming server ID,
gaming user 1D whose request was serviced, service begin
and end timestamps, memory usage for servicing the user
request, CPU usage for servicing the user request, response
time for servicing the user request, number of page faults for
servicing the user request service, number of swaps for ser-
vicing the user request service, and/or the like. For example,
the load balancing server may execute a Hypertext Prepro-
cessor (“PHP”) script including Structured Query Language
(“SQL”) commands to interface with relational database
management system (“RDBMS”) database(s). An exemplary
listing, written substantially in the form of PHP/SQL com-

US 9,403,095 B2

7

mands, illustrating substantive aspects of querying the server
load database is provided below:

<?PHP
header(*Content-Type: text/plain’);
$servertype = “gaming”;
function server__load__query($servertype, $DBserver, $password) {
mysql__connect(“204.192.85.202”,$DBserver,$password); // access
database server
mysql_select_db(“SERVER__LOAD.SQL”); // select database
table to search
//create query for loads of servers of type ($servertype) ‘gaming’
$query = “SELECT
server_id gaming user_id avg swaps avg_ page_ faults
avg_ response_time num_ users meim__usage cpu__usage
FROM ServerLoadTable WHERE

10

8

-continued

if (response.session) {
// A user has logged in, and a new cookie has been saved
}else {
// The user has logged out, and the cookie has been cleared
}
D

</script>
</html>

The load balancing server may then generate and provide a
request for social data including, but not limited to: user 1D,
friend ID(s), friend relationship strength(s), social activity
timestamp(s), message [D(s), message(s), and/or the like. For

server_type LIKE ‘%’ $servertype™; 15 example, the load balancing server may execute PHP com-
$result = mysql_query(Squery); // perform the search query mands similar to those in the exemplary illustrative listing
mysql__close(“SERVER__LOAD.SQL”); // close database access ided below:
return $result; // return search result provided below:
>
))) 20 <?PHP
In some implementations, the load balancing server may header(*Content-Type: text/plain’);
generate a query for social-gaming graph data of the user, and gf(?btziﬂ user IDgS) Ol;fr(ig?ds of the 10gged(-in user
: riends = json__decode(file__get_ contents
pr0V1de the graph data query, e.g., o a graph database. 404a. “https://graph.facebook.com/me/friends?access__token="".
In response to the query, t.he graph database may pr0V1.de.the $Scookie[-oauth_access._token’]), true);
requested graph data, which may include, but not be limited ,5 $friend_ids = array_keys($friends);
to: user ID, friend ID(S), friend relationship strength(s), ﬂags I Obtainl message feed associated with the profile of the logged-in user
for whether the co-user are gamer friends and/or social $feed = json_decode(file_get_contents(,
. . . https://graph.facebook.com/me/feed?access__token="".
friends, and/or the like. For. e).(ample.:, the load balancing $cookie[‘oauth_access_token']), true):
server may execute a PHP script including SQL commands to // Obtain messages by the logged-in user’s friends
query the graph database. An exemplary listing, written sub- 3o $result = mysql_query("SELECT * FROM content WHERE uid IN (* .
stantially in the form of PHP/SQL commands, illustrating . implode($friend _ids, %) . ")");
A . $friend_ content = array();
subst.antlve aspects of querying the graph database for graph while ($row = mysql_fetch_assoc($result)) {
data is provided below: $friend__content[] = $row;
35
<IPHP . . .
header(“Content-Type: text/plain’); In response, the social networking server may provide the
function graph_data_ query($user__ID, $DBserver, $password) { requested information. For example, the social networking
;nysgliconnect(“204.192.85.202”,$DBserver,$password); /I access server may provide a JavaScript Object Notation format
atabase server] 153 :
mysql_select_db(“GRAPH_DATA.SQL"): // select database (JSON .)-encoded data structure embodying the requested
table to search 40 information. An exemplary JSON-encoded data structure
J/create query for social and gaming friend ID(s) of user ($user__1D) embodying social data (e.g., user ID(s) of friends of the
$query = “SELECT friend_ ID gaming flag gaming strength social_flag logged_in user) is provided below:
social__strength FROM GraphDataTable WHERE user_id LIKE %’
$user__id”;
$result = mysql__query($query); // perform the search query - -
mysql_close(“SERVER__LOAD.SQL”); // close database access 45 { “data™[. o ,
return $result; // return search results { name”: “Tabatha Orloff”,
7> “id”: “4837227},
{ “name”: “Darren Kinnaman”,
“id”: “865743"},
In some implementations, the load balancing server may { “name”: “Sharron Jutras”,
query a social networking server (e.g., a Facebook® server) 30 I id”: 70912747}
providing a service utilized by the user and his/her friends for
social data. For example, the load balancing server may]]]
invoke an application programming interface (“API”) call to In some implementations, the load balancing server may
the social networking server. The load balancing server may Ptlhz? the server load data, graph datg and social data. to
request that the user login to the social networking service to 55 identify a gaming server, e.g., 425, to which t.he user's gaming
provide the load balancing server access to the user’s social app request may be forwarded for processing, as dlscgssed
data. For example, the load balancing server may providean ~ further below with regard to FIGS. 5 and 14-15. Upon iden-
HTML page to the client including authentication commands ~ tifying the gaming server to process the user’s request, the
similar to the exemplary illustrative listing provided below: loadbalancmg servermay prowde auser sessionrequest, €.g.,
60 426, to the identified gaming server. For example, the load
balancing server may provide a HTTP(S) POST message
<htm!> requesting acknowledgment from the identified gaming
<d1V.1d=“fb'r§°t”/>/</d1V> rcebonknet! i server that it will process the user’s gaming app request. For
< =" B 77> > . . .
<§§ﬂ§fm tp://connect.facebook net/en_US/alljs™</seript example, the HTTP(S) POST message may include in its
65 message body the user ID, client IP address etc., and a request

FB.init({appld: ‘A3BFES5", status: true, cookie: true, xfbml: true});
FB.Event.subscribe(‘auth.sessionChange’, function(response) {

for user session acknowledgment. An exemplary user session
request HTTP(S) POST message is provided below:

US 9,403,095 B2

9

POST /useradd.php HTTP/1.1

Host: gsl.appserver.com

Content-Type: Application/XML

Content-Length: 229

<?XML version = “1.0” encoding = “UTF-87?>

<userisession7request>
<request_id>AJFY54</request__id>
<timestamp>2010-05-23 21:44:12</timestamp>
<user__ID>username(@appserver.com</user__ D>
<client__IP>275.37.57.98</client__IP>

</user__session__request™>

The identified gaming server may receive the load balanc-
ing server’s user session request, and may provide a user
session acknowledgment, e.g., 427, to the load balancing
server. For example, the gaming server may provide a
HTTP(S) POST message confirming the user 1D, client IP
address, etc., and providing an acknowledgment message in
the body of the HTTP(S) POST message. An exemplary user
session acknowledgment HTTP(S) POST message including
user session acknowledgment is provided below:

POST /useraddack.php HTTP/1.1

Host: www.appserver.com

Content-Type: Application/XML

Content-Length: 267

<?XML version = “1.0” encoding = “UTF-87?>

<user__session__acknowledgment>
<request_id>AJFY54</request__id>
<ack__id>AJFY541</ack__id>
<timestamp>2010-05-23 21:47:32</timestamp>
<user__ID>username(@appserver.com</user__ D>
<client__IP>275.37.57.98</client__IP>

<fuser__session__acknowledgment>

In some implementations, upon receiving the gaming serv-
er’s user session acknowledgment, the load balancing server
may provide a URL redirection message to the client. The
URL redirection message may include a Uniform Resource
Locator (“URL”) of the identified gaming server, and may
indicate to the client that the client redirect the gaming app
request to the identified gaming server. For example, with
reference to the exemplary HTTP(S) GET gaming app
request message provided by the client, the load balancing
server may respond by providinga HTTP(S) REDIRECT 300
message, similar to the exemplary message provided below:

HTTP/1.1 300 Multiple Choices

Location: http://gsl.appserver.com/mafiawars.html
<html>

<head>

<title>300 Multiple Choices</title>

</head>

<body>

<h1>Multiple Choices</h1>

</body>

</html>

Upon receiving the URL redirection message, the client
may provide the gaming app request (e.g., similar to the
gaming app request message to the load balancing server) to
the identified gaming server. In response the gaming server
may generate a gaming app query (e.g., 428) for a gaming
app, e.g., 430, and provide the gaming app query (e.g.,429)to
a gaming realm database. In response, the gaming realm
database may provide the gaming app (e.g., an Adobe® Flash
object) to the gaming server. For example, the gaming server
may execute a PHP script including SQL commands to query
the gaming realm database and obtain the gaming app. An

10

15

20

25

30

35

40

45

50

55

60

65

10

exemplary listing, written substantially in the form of PHP/
SQL commands, illustrating substantive aspects of querying
the gaming realm database for the gaming app is provided
below:

<?PHP

header(*Content-Type: text/plain’);

function app__query($appname, $DBserver, $password) {
mysql__connect(*204.192.85.202”,$DBserver,$password); // access
database server

mysql_select__db(“APPS.SQL”); // select database table to search
//create query for requested client-side gaming application

$query = “SELECT client__app FROM AppTable WHERE apptitle LIKE
%’ $appname™;

$result = mysql_query($query); // perform the search query
mysql__close(“APPS.SQL”); // close database access

return $result; // return search results

>

In some implementations, the gaming server may provide
the client with a HTML page including a reference to an
Adobe® Flash object (including a user application, e.g., 431)
stored on the gaming server. An exemplary HTML code list-
ing including JavaScript™ commands referencing an
Adobe® Flash object within the HTML page is provided
below:

<htm!>
<div id="“GameStage”>
If you’re seeing this, you don’t have Flash Player installed.
</div>
<script type="text/javascript”>

var app = new SWFObject(“http://gs1.appserver.com/apps/

mafiawars.swi”,

“Media”, “6407, “4807, “8”, “#000000™);
app.addParam(“quality”, “high™);
app.write(“GameStage”);

</script>
</html>

Upon obtaining the app, the client device may execute the
app for presentation to the user, e.g., 432. For example, with
reference to the examples above, a web browser executing on
the client device may render the HTML web page and may
communicate with the gaming server to download the
Adobe® Flash object. An Adobe® Flash browser plug-in
installed on the client device and operating in conjunction
with the browser may play/execute the downloaded Flash
object for presentation to the user. In some implementations,
the app may include interactive features, and may allow the
user to provide user input/feedback, e.g. 435, via a variety of
mechanisms (e.g., keyboard entry into a command-line inter-
face, mouse input in a graphical user interface, gestures on a
touch-sensitive interface, voice commands, etc.). In some
implementations, the client device executing the app may
generate, maintain, update and/or store data pertaining to the
user’s interaction with the app (e.g., an app state, an app data
structure, a block of memory with data variables, a Flash
movie clip, etc.). For example, the app may store a data
structure encoded according to the JavaScript Object Nota-
tion (“JSON”) format. An exemplary JSON-encoded data
structure is provided below:

“app__data”

{

“app__id”: “A236269”,
“app__name”: “poker”,

“player__id”: “jgpublic”,

US 9,403,095 B2

11

-continued

“player_ name”: “John Q. Public”,

“game__id”: “AHWJ20100630”,

“md5__auth”: “f585e3efede0c3b400b259088fa3f6d”,

“player__action”: {
“timestamp”: “2010-06-30 09:23:47”,
“action__type”: “raise”,
“action__amount™: “50.00”,

“action__source”: “credit card 17

}

10

12

<?PHP

header(*Content-Type: text/plain’);

// set ip address and port to listen to for incoming data

$address = 192.168.0.100’;

$port = 255;

// create a server-side SSL socket, listen for/accept incoming
communication

$sock = socket__create(AF__INET, SOCK__STREAM, 0);

socket_ bind($sock, $address, $port) or die(*Could not bind to address’);
socket__listen($sock);

$client = socket__accept($sock);

// read input data from client device in 1024 byte blocks until end of

In some implementations, the gaming server may generate
a secure communications session (e.g., 433, instantiate user
session) with the client in order to facilitate communication
during the user gaming experience between the client and
gaming server. As an example, the app may provide data
stored on the client device for the gaming server as user game
input, e.g., 436. For example, an Adobe® Flash object run-
ning on the client may include ActionScript™ 3.0 commands
to create a Secure Sockets Layer (“SSL”) connection with a
server, generate a message including a JSON-encoded data
structure such as illustrated in the example above, and send
the message via the secure SSL. connection to the server.
Exemplary commands, written substantially in the form of
ActionScript™ 3.0, to create a secure SSL connection to a
server, load data from a locally stored JSON-encoded data
file, and send a message including the JSON-encoded data via
the SSL connection to the server, are provided below:

// import required packages

import flash.events. *;

import flash.net.socket;

import flash.net. URLLoader;

import flash.net. URLRequest;

import com.adobe.serialization.json.*;

// obtain server socket policy file, create socket connection to server port
system.security.loadPolicyFile(“xmlsocket://gs1.appserver.com:208”);
msg = new socket();

msg.connect(“https://gs1l.appserver.com”, 255);

// load data as text string from .json file

var loader:URLLoader = new URLLoader();

var request:URLRequst = new URLRequest();

request.URL = “data.json”;

loader.dataformat = “text”

loader.load(request)

// transmit data to server via secure SSL connection, then close socket
msg.writeMultiByte(loader.data, “UTF-8");

msg.close();

In some implementations, the gaming server may be
executing a PHP script implementing a Secure Sockets Layer
(“SSL”) socket server which listens to incoming communi-
cations on a server port to which the client device may send
data, e.g., data encoded according to the JavaScript Object
Notation (“JSON”) format. Upon identifying an incoming
communication, the PHP script may read the incoming mes-
sage from the client device, parse the received JSON-encoded
text data to extract information from the JSON-encoded text
data into PHP script variables, and store the data (e.g., user
session state 434, 439, etc.) and/or extracted information in a
relational database accessible using the Structured Query
Language (“SQL”). An exemplary listing, written substan-
tially in the form of PHP/SQL commands, to accept JSON-
encoded game input data from a client device via a SSL
connection, parse the data to extract variables, and store the
data to a database, is provided below:

30

35

40

45

50

55

60

message
do {

Sinput = *;

$input = socket__read($client, 1024);

$data .= $input;
} while($input != «?);
// parse data to extract variables
$obj = json__decode($data, true);
// store gaming input data in a gaming realm database
mysql__connect(*201.408.185.132”,$DBserver,$password); // access
database server
mysql_select(“REALM.SQL”); // select database to append
mysql__query(“INSERT INTO GaminglnputTable (transmission)
VALUES ($data)™); // add data to GamingInoutTable table in a REALM
database
mysql_close(“REALM.SQL”); // close connection to database
>

In some implementations, the gaming server may require
game rules and/or require environment data related to the
user’s current gaming environment (e.g., what are the cards
being held by the other players in a game of poker?, what are
the actions of the members of the user’s mafia?, etc.). The
gaming server may utilize the environment data 437, e.g., as
stored in gaming realm database(s), and the user’s gaming
input to compute an updated user session state for the client
(e.g., representing change of the state of the game, actions of
the game player/co-player(s) within the game, etc.). For
example, a gaming realm database may store environment
data including, but not limited to, user session state(s), such as
the exemplary illustrative JSON-encoded user session state
data structure provided below:

“realm_ data”

“app__id”: “A236269”,
“app__name”: “poker”,
“game_ id”: “462371”,
“player__id”: “jgpublic”,
“player__name”: “John Q. Public”,
“md5__auth”: “f585e3efede0c3b400b25908 8 fa3f6d”,
“last__action__timestamp™: “2010-06-30 09:23:47”,
“player_hand™: {

card { “suit™: “clubs”,

“value™: “87},
card { “suit™: “hearts”,

“Value”: “Q”},
card { “suit™: “hearts”,
“Value”: EiK”},

card { “suit”: “spades”,
“Value”: 659”},

card { “suit”: “diamonds”,
“Value”: 657’5}

¥

In some implementations, the gaming server may utilize a
game 1D of the game in progress to query its gaming realm
database to identify the user IDs of the users involved in the
game, and identify IP addresses of the gaming realm data-
base(s) storing the user session states of the identified users.
The gaming server may then query the identified gaming

US 9,403,095 B2

13

realm database(s) for the user sessions states of the users. For
example, the gaming server may utilize PHP/SQL commands
similar to the exemplary illustrative commands provided
below:

<?PHP
header(*Content-Type: text/plain’);
// query for game players and associated realm database IP addresses
mysql__connect(“204.192.85.202”,$DBserver,$password); // access
database server
mysql_select_db(*REALM.SQL”); // select database table to search
$query = “SELECT players_ID realm_ IP FROM RealmTable WHERE
game__ID LIKE ‘%’ $gameid”;
$result = mysql__query($query); // perform the search query
mysql_close(“REALM.SQL”); // close database access
// query for game player session states sequentially
$rows = mysql__num__rows($result);
for ($k = 0; $k <= $rows-1; $k++) {
// obtain player ID, realm database IP address
$uid = mysql__result($result.k,0);
$ip = mysql__result($result,k,1);
// connect to player’s realm database, download player’s session state
mysql__connect($ip,$DBserver, $password); // access database server
mysql_select__db(“REALM.SQL”); // select database table to search
$query = “SELECT user__state FROM RealmTable WHERE
user__ID LIKE *%’ $uid”;
// save player’s session state to array
$state[] = mysql__query($query); // perform the search query
mysql__close(“REALM.SQL”); // close database access
}// end for-loop
>

10

Upon obtaining the user sessions states for the players in
the game, the gaming server may compute a new session
state(s) for the user(s), e.g., 438. The gaming server may save
the new session state(s) for the user(s) to the gaming realm
database, e.g., 439. For example, the gaming server may
utilize PHP/SQL commands similar to those illustrated in the

14

gaming server may generate a data structure representative of
a scalable vector illustration, e.g., a Scalable Vector Graphics
(“SVG”) data file such as render data 441. The data structure
may include, for example, data representing a vector illustra-
tion. An exemplary vector illustration data structure (an
XML-encoded SVG data file, written substantially according
to the World-Wide Web Consortium’s SVG standard), and
including data for an example vector illustration comprising a
circle, an open path, a closed polyline composed of a plurality
of line segments, and a polygon, is provided below:

<7XML version = “1.0” standalone = “no”>
<IDOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1/EN”
“http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgl 1.dtd”>
<svg width = “100%” height = “100%” version = “1.1”
xmlns="http://www.w3.0rg/2000/svg”>
<circle cx="250" cy="75" r="33" stroke="blue”
stroke-width="2" fill="yellow”/>
<path d=*M250 150 L150 350 L350 350 2 />
<polyline points=“0,0 0,20 20,20 20,40 40,40 40,80
style="fill:white;stroke:green;stroke-width:2"/>
<polygon points="280,75 300,210 170,275”
style="“fill:#cc5500;
stroke:#ee00ee;stroke-width:17/>
</svg>

The gaming server may provide the render data via one or
more HTTP(S) POST messages and/or using an SSL. connec-
tion with the client, e.g., as illustrated in examples provided
above in this disclosure. Upon obtaining the render data, the
client may render, e.g., 442 the visualization represented in
the data structure for display to the user, e.g., 443. For
example, the client may be executing an Adobe® Flash object
within a browser environment including ActionScript™ 3.0
commands to render the visualization represented in the data
structure, and display the rendered visualization for the user.

. R . . 35 . . .
example above with regard to storing gaming input data in the Exemplary commands, written substantially in a form
gaming realm database. In some implementations, the gam- adapted to ActionScript™ 3.0, for rendering a visualization
ing server may also determine the computational load expe- of a scene within an Adobe® Flash object with appropriate
rienced by the gaming server in order to perform the compu- dimensions and specified image quality are provided below:
tation of the new sessions state(s) for the user(s). For example, .
the gaming server may generate load statistics (e.g., 440) - -
including, but not limited to: service begin and end times- // import necessary modules/functions
. import flash.display.BitmapData;
tamps, computation time, respon.se. time for servicing the user import flash.geom.*;
request, memory usage for servicing the user request, CPU import com.adobe.images.JPGEncoder;
usage for servicing the user request, number of page faults for 5 // generate empty thumbnail bitmap with appropriate dimensions
servicing the user request service, number of swaps for ser- :122 tilﬁsomuicﬁ'e]?glgflpmta = new BitmapData (sketch_me.width,
\{ic@ng t.he user.request serv.ice, and/or the like..A.n exemplary // capture sﬁapsot of movie clip in bitmap
listing illustrating substantive aspects of providing load sta- bitSource.draw(sketch_mc);
tistics to a server load database, written substantially in the var imgSource:Image = new Image();
form of PHP/SQL commands, is provided below: imgSource.load(new Bitmap(bitSource, “auto”, true));
50 // generate scaling constants
var res:Number = 640 / max(sketch__mc.width, sketch__mc.height);
var width:Number = round(sketch__mec.width * res);

<7PHP var height:Number = round(sketch__mc.height * res);
header(*Content-Type: text/plain’); // scale the image
mysql__connect(“204.192.85.202” $DBserver,$password); // access imgSource.content.width = width;
database server 55 J/ JPEG-encode bitmap with 85% JPEG compression image quality
mysql_select__db(“SERVER__LOAD.SQL”); // connect to string queue var jpgEncoder:JPGEncoder = new JPGEncoder(85);
database var jpgStream:ByteArray = jpgEncoder.encode(jpgSource);
mysql__query(“INSERT INTO ServerLoadTable // Pass JPEG-encoded bitmap to PHP script for further use
(server_id gaming user_id avg_ swaps var header:URLRequestHeader = new URLRequestHeader

avg_ page_ faults avg_ response_ time mem__usage (“Content-type”, “application/octet-stream”);

cpu__usage start_time end__time timestamp™) 60 var JpgURLRequest:URLRequest = new

VALUES ($serverid, $userid, $swaps, $page faults, $resp__time, URLRequest(“jpg__encoder__download.php?name=sketch.jpg”);

$mem__use, jpgURLRequest.requestHeaders.push(header);

$cpu__use, $start, $end, time()); // add load statistics record jpgURLRequest.method = URLRequestMethod . POST;
mysql__close(“SERVER__LOAD.SQL”); // close connection to database jpgURLRequest.data = jpgStream;
7> navigateToURL(jpgURLRequest, “__blank™);

65

In some implementations, the gaming server may provide
results of the computation for the client. For example, the

In some implementations, the load balancing server, e.g.,
411a may be triggered to perform user social relationship and

US 9,403,095 B2

15

online behavior-sensitive server load balancing. For example,
auser, client, gaming server and/or other entity affiliated with
the OGM may provide a request for user social relationship
and online behavior-sensitive server load balancing. In some
implementations, the load balancing server may perform a
periodic and/or continuous monitoring of the server loads
from the server load database, and may identify the need for
load balancing based on analyzing the server loads, e.g., 445.
Upon identifying a need for server load balancing, the load
balancing server may obtain the server loads (e.g., 444, from
the server load database) and graph data (e.g., 446, from the
graph database and/or social networking server). For
example, the load balancing server may issue PHP and/or
SQL commands similar to the illustrative examples provided
previously in this disclosure to query the server load database,
graph database and/or social networking server for the server
loads, graph data, and social data respectively. Using the
server loads, graph data and/or social data, the load balancing
server may identify one or more servers to which the OGM
may transfer the user (hereinafter “transfer candidate serv-
ers”). The load balancing server may select, e.g., 447, one of
the transfer candidate servers as a transfer server to which to
transfer the user’s session. Upon selecting the transfer server,
the load balancing server may send a user transfer request,
e.g., 448, to the transfer server. For example, the load balanc-
ing server may send a HTTP(S) POST message requesting
acknowledgment from the transfer server that it will accept
the transfer of the user’s session. For example, the HTTP(S)
POST message may include in its message body the user ID,
current gaming server ID, client IP address etc., and a request
for user transfer acknowledgment. An exemplary user trans-
fer request HTTP(S) POST message is provided below:

POST /useradd.php HTTP/1.1

Host: gsl.appserver.com

Content-Type: Application/XML

Content-Length: 229

<?XML version = “1.0” encoding = “UTF-87?>

<user7transfer7request>
<request__id>AJFY64</request_id>
<timestamp>2010-05-24 21:44:12</timestamp>
<user__ID>username@appserver.com</user__ID>
<client_ IP>275.37.57.98</client_ IP>
<server__ID>gsl.appserver.com</server_ ID>

<fuser__transfer_ request>

The transfer server may receive the load balancing server’s
user session request, and may provide a user transfer accept
acknowledgment, e.g., 449 to the load balancing server. For
example, the transfer server may provide a HTTP(S) POST
message confirming the user ID, client IP address, etc., and
providing an acknowledgment message in the body of the
HTTP(S) POST message. An exemplary user session
acknowledgment HTTP(S) POST message including user
session acknowledgment is provided below:

POST /useraddack.php HTTP/1.1

Host: www.appserver.com

Content-Type: Application/XML

Content-Length: 267

<?XML version = “1.0” encoding = “UTF-87?>

<user_transfer_acknowledgment>
<request_id>AJFY64</request_id>
<ack__id> AJFY641</ack__id>
<timestamp>2010-05-24 21:46:12</timestamp>
<user__ID>username@appserver.com</user__ID>
<client_ IP>275.37.57.98</client_ IP>
<server_ ID>gs2.appserver.com</server_ ID>

<fuser__transfer_ acknowledgment>

10

15

20

25

30

35

40

45

50

55

60

65

16

In some implementations, upon accepting transfer of the
user from the gaming server 4114, the transfer server (e.g.,
gaming server 4115) may generate freeze and/or transfer
orders, e.g.,450, and send, e.g., 451, the freeze and/or transfer
orders to inform the client to temporarily suspend initiation of
communication with the server(s) (e.g., only accept incoming
communication from servers) while the user transfer takes
place between the gaming server and the transfer server,
and/or to communicate with the transfer server, rather than
the gaming server, upon resumption of communication. The
transfer server may, for example, generate a socket connec-
tion with an Adobe® Flash object running on the client (as
illustrated in examples above), and write the freeze and/or
transfer orders via the socket connection to the Adobe Flash®
object using PHP commands similar to the example below:

<?PHP

header(*Content-Type: text/plain’);

$message = “<?XML version = “1.0” encoding = “UTF-
87><order><1>freeze</1><2>transfer<ip> gs2.appserver.com
</ip></2></order>"

$len = strlen($message);

$offset = 0;

while ($offset < $len) {
$sent = socket_ write($socket, substr($message, $offset),
$len-$offset);
if ($sent === false) {

break; // Error occurred, break the while loop}

Soffset += $sent;}

>

Upon receiving the freeze order (e.g., 451-452), the client
402 may freeze, e.g., 453, the client application (e.g., prevent
the Adobe Flash® object from sending requests to server(s)).
The OGM may then initiate the user transfer from gaming
server to the transfer server. The gaming server, e.g., 411a,
may provide a request for the user’s session state 454 from the
gaming realm database associated with the gaming server
(e.g., 412a), for example, using PHP/SQL commands similar
to examples provided above. In response, the gaming realm
database 412a may provide the request user session state, e.g.,
455. The gaming server may then transfer the user session
state, e.g., 456, to the transfer server (e.g., gaming server
4115). For example, the gaming and transfer servers may
establish a secure SSL connection with each other, and the
gaming server may send the user session state data to the
transfer server using PHP commands similar to the examples
above. Upon obtaining the user session state data from the
gaming server, the transfer server may instantiate 457 a user
session for the user, and store, e.g., 458, the user session state
data obtained from the gaming server in its gaming realm
database (e.g., 4125). Upon completion of user session data
transfer and storage, the transfer server may provide a transfer
acknowledge message, e.g. 459, for example, using PHP
commands as such as in the examples above, to transfer an
XML data structure via a SSL connection between the trans-
fer and gaming servers. Upon receiving the transfer acknowl-
edgment from the transfer server, the gaming server may
terminate, e.g., 460, its user session corresponding to the user
(e.g., 401) and compute new load statistics after deletion of
the user session. The gaming server may also delete, e.g., 461,
the user session data from its gaming realm database (for
example, by executing a PHP script issuing SQL commands
to the database). Upon deletion of user-related data from the
gaming server and/or its gaming realm database, the gaming
server may provide a session termination acknowledgment,
e.g., 463, to the transfer server.

US 9,403,095 B2

17

In some implementations, the transfer server may provide
an app unfreeze order, e.g., 464, for the client (e.g., allowing
the Adobe® Flash object to resume communications with the
server) upon receiving the session termination acknowledg-
ment. For example, the transfer server may provide an app
unfreeze order as a HTTP(S) POST message similar to the
examples provided above. In response, the client may
unfreeze the app, e¢.g., 465, and resume communication with
the server components, e¢.g., with the transfer server. For
example, the client may allow the user to provide user input/
feedback, e.g., 466, and update and/or store data pertaining to
the user’s interaction with the app. The app may provide data
stored on the client device for the transfer server as user game
input, e.g., 467. Upon obtaining the game input, the transfer
server may obtain the user sessions states for the players in the
game, and may compute a new session state(s) for the user(s).
For example, the transfer server may utilize the environment
data, 468, e.g., as transferred from the gaming server’s gam-
ing realm database and stored in the transfer server’s gaming
realm database(s), and/or the user’s gaming input to compute
an updated user session state, e.g., 469, for the client. The
transfer server may also determine the computational load
experienced by the transfer server in order to perform the
computation of the new sessions state(s) for the transferred
user(s). The transfer server may store the computed new user
session state, e.g., 470, in its gaming realm database, e.g.,
412b, and store the load statistics, e.g., 471, in the server load
database. Via the computation, the transfer server may have
generated a data structure representative of a visualization
(e.g., a scalable vector illustration such as a Scalable Vector
Graphics (“SVG”) data file), e.g., render data 472, and may
provide the render data for the client. Upon obtaining the
render data, the client may render, e.g., 473, the visualization
represented in the data structure for display to the user, e.g.,
474.

FIG. 5 is of a logic flow diagram illustrating exemplary
aspects of initiation of a user application session with the
OGM in some embodiments of the OGM, e.g., a user session
initiation (“USI”’) component 500. In some implementations,
a user and/or client may generate a request, e.g., 501, to join
a multi-user network application (e.g., a massively multi-
player online game). The client may provide the generated
request 502 for an app for aserver (e.g., load balancing server,
gaming server—A, etc.). For example, a web browser execut-
ing on the client may provide a HTTP(S) GET message
requesting a HTML page including JavaScript™ commands
to embed an Adobe® Flash object including the application
for the user in the HTML page, as illustrated in the example
provided with reference to FIGS. 4A-D. The server receiving
503 the app request may determine that user credentials are
required in order to determine whether the user is authenti-
cated to use the app. The server may provide a mechanism for
the user to provide the requested credentials. For example, in
some implementations, the server may provide an HTML
page with an input form for the user to provide user creden-
tials, and request user credentials. The user may input the user
credentials into the HTML input form, and press a submit
button included in the HTML form. Upon pressing the submit
button, the web browser of the client device may generate a
HTTP(S) POST message including the user-provided form
inputs for the server. As another example, in some implemen-
tations, the server may provide an Adobe® Flash object
including ActionScript™ 3.0 commands to request the user to
provide user credentials by entering the credentials into input
text fields included in the Adobe® Flash object, and may
provide the user-entered credentials for a server via a
HTTP(S) POST message to the server.

10

15

20

25

30

35

40

45

50

55

60

65

18

Upon obtaining the user credentials, the server may query
a user profile database to determine whether the user is
authenticated to use the app. For example, the server may
implement a PHP script including commands to query a user
profile database for user authentication details, and may com-
pare the authentication details obtained via querying the data-
base with the user-entered credentials. If the user is authen-
ticated (e.g., 504, option “Yes”), the load balancing and/or
gaming servers may execute a gaming server selection pro-
cedure, e.g., 506-507, to determine which gaming server
should host the user/client (e.g., using the User Migration
component 1400 as described in FIGS. 14A-C, and the Server
Transfer Selection component 1500 as described in FIG. 15).
Upon identifying the gaming server to host the user, the load
balancing server and/or identified gaming server may query,
e.g., 508, a gaming realm database for an app to provide for
the user, based on the details of the user’s app request. The
server may provide, e.g., 509, the retrieved app for the user to
the client device, using e.g., an IP address for the client device
included in the app request message originally provided by
the user. The client, upon obtaining the app may execute, if
required (e.g., 510, Option “Yes”), any installation proce-
dures, e.g., 511, required to install the app on the client
device, and then execute/display the app for the user. For
example, the client may obtain a Shockwave Flash (*.swt)
object from the server, and may invoke an Adobe® Flash web
browser plug-in to process and display the *.swf object for the
user.

In some implementations, the client device and gaming
server may generate a session, e.g., 512, for the user/client to
facilitate (secure) communications between the client and the
server. For example, an Adobe® Flash object running within
a browser environment on the client may include Action-
Script™ 3.0 commands to create a Secure Sockets Layer
(“SSL”) connection with a server, and the server may be
implementing a PHP script implementing a SSL socket server
which listens to incoming communications on a server port to
which the client device sends data, as described previously.
Upon generating the session with the client, the gaming
server may provide, e.g., 513, (e.g., using PHP/SQL com-
mands described in the examples above) the details of the
session in a server load database, including, but not limited to:
gaming server 1D, user 1D, user name, app name, app 1D,
socket ID, socket expiry time, socket bandwidth, communi-
cation protocols, security protocols, communication priority
level, and/or the like. Upon receiving the session details, the
server load database may store the session details for later use.

FIGS. 6A-B are of logic flow diagrams illustrating exem-
plary aspects of implementing user gaming interactions with
the OGM within a user application session in some embodi-
ments of the OGM, e.g., a user gaming interaction (“UGI”)
component 600. In some implementations, the gaming server
may obtain a snapshot of its computational and/or other load
before providing services for a user/client. For example, the
server may obtain metrics including, but not limited to: num-
ber of users currently hosted, total memory usage, total CPU
usage, average response time for servicing user requests,
number of page faults per user request, number of swaps per
user request, and/or the like. For example, the server may
include PHP commands similar to the exemplary listing
below to obtain load metrics with regard to servicing a par-
ticular user request and/or obtaining global load information
with regard to servicing all of its hosted users:

<?PHP

//measure time elapsed for a database query//
$start = microtime(true);

$result = mysql__query($query);

$end = microtime(true);

US 9,403,095 B2

19

-continued

$time = $end — $start;
// measure usage statistics for a php script
$dat = getrusage();
echo $dat[“ru_nswap™]; // number of swaps
echo $dat[“ru_majfit”]; // number of page faults
echo $dat[“ru_utime.tv_sec”]; // user time used (seconds)
echo $dat[“ru_utime.tv_ usec”]; // user time used (microseconds)
echo $dat[“ru_utime.tv_sec”]*1le6+$dat[“ru_utime.tv__usec™];
// actual time (in microseconds)
>

The server may use such commands to determine its over-
all capacity to accept new users, as well determine the amount
of resources available that are available to a particular user
being serviced. The server may obtain a snapshot before it
commences servicing a user request from a user/client, and
for example, may provide the session details (e.g., port num-
ber on the server to which the client must send user requests)
after obtaining the load snapshot.

In some implementations, the app executing on the client
may include interactive features for the user. For example, the
app may be configured to accept user input/feedback via a
variety of mechanisms including, but not limited to, keyboard
entry, mouse input, touch input, touch gestures, voice com-
mands, auto-form filling, and/or the like. The app may pro-
vide a variety of user interfaces configured to accept such
input from the user including, but not limited to, command
line keyboard entry interfaces, graphical user interfaces,
touch-sensitive interfaces, and/or the like. In some implemen-
tations, the user may interact, e.g., 603, with the app and
provide input into the app. For example, the user may provide
input as part of a gaming application, a social application
(e.g., chat room, instant messaging, etc.), information
resource selection, and/or the like. The client device may
detect input from the user. For example, the client may
include hardware resources (e.g., keyboard, mouse, etc.) that
provide triggers when a user manipulates the input hardware
resources. Upon detecting user input, the client may obtain
such user input, and determine whether the provided input is
sufficient for the action and/or circumstances within the app
at the time of user input. For example, the app may be con-
figured to only accept user credentials input if the user cre-
dential input is longer than a predetermined number of char-
acters. If the input is determined to be insufficient, the client
may indicate to the user to provide further input, and may wait
for the requested user input to be provided. If the input is
determined to be sufficient for the app to complete the action
for which it requested/is provided the input, the app may
incorporate the input into the interactive user experience, and
proceed with instructions execution according to the satisfac-
tory user input. In some implementations, the client executing
the app may generate, maintain, update and/or store, e.g., 604,
data pertaining to the user’s interaction with the app (e.g., an
app state, an app data structure, a block of memory with data
variables, a Flash movie clip, etc.). In some implementations,
the client may determine whether to provide data stored on
the client for a server, e.g., 606. If the client determines that
data should be provided for the server (e.g., 606, option
“Yes”), the client may prepare the data for transmission and
provide the data, e.g., 607, for the server, for example, via a
HTTP(S) POST messages and/or secure SSL. connection with
the server as discussed previously.

In some implementations, the gaming server may, upon
obtaining the user/client data/state, generate queries for envi-
ronment data, e.g., 608, stored in gaming realm database(s),
pertaining to the user and the co-users who are included in the

10

15

20

25

30

35

40

45

55

60

65

20

game/realm in which the user is playing. The gaming realm
database may provide, e.g., 609, the requested gaming envi-
ronment data. For example, the gaming realm database may
provide environment data including, but not limited to, user
session state(s), such as the exemplary illustrative JSON-
encoded user session state data structures provided in the
examples above. The server may utilize the environment data
for theuser(s) provided by the gaming realm database, as well
as the user’s gaming input, to compute, e.g., 610, an updated
user session state for the client (e.g., representing change of
the state of the game, actions of the game player/co-player(s)
within the game, etc.). Upon completion of the computation,
the server may generate load statistics for servicing the user
request, e.g., 611. For example, the server may again obtain a
snapshot of its computational and/or other load metrics, e.g.,
using PHP commands similar to those described previously.
The server may use the “before-computation” and “after-
computation” load snapshots to determine load metrics per-
taining to servicing the user’s request, e.g., 612. For example,
the server may subtract the “before-computation” load met-
rics from the “after-computation” load metrics to determine
the portion of the load metrics applicable to servicing a par-
ticular user request. The server may provide the overall “after-
computation” load metrics, as well as the load metrics for the
particular user to the server load database, e.g., 614.

In some implementations, the server may provide the com-
puted updated user session state for the client. For example,
the server may provide, e.g., 615, the render data (e.g., an
XML-encoded SVG data file) via one or more HTTP(S)
POST messages and/or using an SSL connection with the
client, e.g., as illustrated in examples provided above in this
disclosure. Upon obtaining the render data, the client may
render, e.g., 616, the visualization represented in the data
structure for display to the user, e.g., 617.

FIG. 7 is of a logic flow diagram illustrating exemplary
aspects of termination of a user application session with the
OGM in some embodiments of the OGM, e.g., a user session
termination (“UST”) component 700. In some implementa-
tions, the user may wish to terminate, e.g., 701, the session
with the server. For example, the user may close the applica-
tion, log off from the connection, stay dormant for a period of
time, etc. The client may, in such situations, generate a noti-
fication to leave the multi-user network application, and pro-
vide the notification to the server, e.g., 702. Upon obtaining
the notification, e.g., 703, the server may identify a session
associated with the user, e.g., by issuing PHP/SQL com-
mands to the server load database to identify a session based
on the user ID of the user. Upon identifying the session, the
server may issue a query to the server load database, e.g. 704,
for example using PHP/SQL commands, to delete the record
of the session from the database. The server may also termi-
nate the session by ending listening to the port to which the
client was instructed to send user requests. The server load
database may, upon obtaining the termination order from the
gaming server, update, e.g., 705, its records by deleting the
record of the session for the user.

FIGS. 8A-B are of logic flow diagrams illustrating exem-
plary aspects of processing a user-initiated server load bal-
ancing request in some embodiments of the OGM, e.g., a
user-initiated load balancing request (“UI-LBR”) component
800. In some implementations, a user utilizing an app running
on a client may be experiencing a slow app experience, and
may request, e.g., 801, the OGM to attempt improving the app
experience. For example, the user may click on a hyperlink
within the app that results in generation of a user-initiated
load-balancing request. In response, the client may provide a
load balancing request on behalf of the user to the OGM, e.g.,

US 9,403,095 B2

21

to the load-balancing server. For example, a browser applica-
tion executing on the client and hosting the app may provide
a HTTP(S) POST message including XML-encoded load
balancing request data, similar to the example listing pro-
vided below:

POST /loadbalance.php HTTP/1.1

Host: www.appserver.com

Content-Type: Application/XML

Content-Length: 279

<?XML version = “1.0” encoding = “UTF-87?>

<load__balance_ request>
<request_id>THVU37</request__id>
<requestor__type>user</requestor__type>
<requestor__id>username(@appserver.com<requestor__id>
<server__id>gsl.appserver.com<server__id>
<timestamp>2010-05-23 21:34:23</timestamp>

</load__balance_ request>

The load balancing server may obtain, e.g., 802, the request
from the client, and parse the XML -encoded request to obtain
the load balancing request data. For example, the load bal-
ancing server may utilize PHP commands similar to the
exemplary listing provided below:

<?PHP
$p =xml_parser_ create(); // create XML parser
xml__parse_into_struct($p, $xml_ data, $values, $index);
parser type
xml__parser__free($p);

// specify

// parse XML data stored in variable
$xml_ data
>

The load balancing server may obtain an ID or name of the
gaming server providing services to the client, and may query,
e.g., 803, the server load database for the load data pertaining
to that gaming server. For example, the load balancing server
may utilize PHP/SQL commands, similar to the examples
presented previously, to obtain the load data of the identified
gaming server from the server load database. In response, the
server load database may provide, e.g., 804, the requested
server load data which may include, but not be limited to: a
gaming server 1D, number of users being serviced, gaming
user IDs whose requests were serviced, service begin and end
timestamps, memory usage for servicing the user request,
CPU usage for servicing the user requests, average response
time for servicing the user requests, number of page faults for
servicing the user requests, number of swaps for servicing the
user requests, and/or the like. The load balancing server may
also request, e.g., 805, the server load database for load bal-
ancing rules which the load balancing server may utilize to
determine whether the load balancing request is a valid
request. The server load database may provide, e.g., 806,
rules in response to the load balancing server’s request. For
example, the server load database may return an XML-en-
coded load balancing rules file similar to the exemplary list-
ing provided below illustrating load balancing rules:

<?XML version = “1.0” encoding = “UTF-877>

<load__balancing rule>IF (server__ip = 29.76.238.xxx AND
(num__users > 5000 OR mem__usage > 90%)) THEN
(ADD REQUEST)</load_ balancing rule>

<load__balancing rule>IF (server_ip = 29.76.xxx.xxx AND
(avg__response__time > 20000 AND mem__usage > 80%)) THEN
(ADD REQUEST)</load__balancing rule>

<load__balancing rule>IF (num__users > 8000 AND
(NOT (mem__usage < avg__mem__usage)) THEN
(ADD REQUEST)</load__balancing rule>

10

15

20

25

30

35

40

45

50

55

60

65

22

The server may obtain the load-balancing rules file from
the server load database, and parse, e.g., using PHP com-
mands similar to the example above, the load balancing rules
file to obtain the load balancing rules. The load balancing
server may apply the rules to the server load data to deter-
mine, e.g., 807, whether the load balancing request is valid.
For example, the load balancing server may apply each load
balancing rule to the server load data, and determine whether
any of the rule outcomes requires that the user’s request be
serviced. If any rule produces such an outcome, the load
balancing server may determine that the load balancing
request is valid. In some implementations, the load balancing
server may determine a priority level for the load balancing
request based on whether the request was submitted by the
user (as opposed to a server and/or other OGM component),
the number of load balancing rules that produced an outcome
requiring the user’s request to be serviced, a time of submis-
sion of the load balancing request, etc. If no load balancing
rule produces an outcome that requires the load balancing
request to be serviced (e.g., 808, Option “No”), the load
balancing server may generate a request denied message
(e.g., as a HTTP(S) POST message) for the user/client, and
may provide troubleshooting routines, e.g., 809, which the
user/client may utilize, e.g., 810, to identify and solve the
problem. However, if the load balancing server determines
that the user’s load balancing request should be serviced (e.g.,
808, Option “Yes”), the load balancing server may assigned
the calculated priority value to the user’s load balancing
request, e.g., 811, and add the user’s load balancing request
and the priority value to auser-initiated load balancing queue,
e.g., 812. For example, the load balancing server may utilize
PHP/SQL commands similar to the examples presented pre-
viously to add a record including details of the user’s load
balancing request and priority value(s) to the user-initiated
load balancing queue. The load balancing server may also
generate an acknowledgment message, e.g., 813, acknowl-
edging that the user’s load balancing request has been
accepted, and provide, e.g., 814 the message, e.g., asa HTTP
(S) POST message, for the user/client.

FIGS. 9A-B are of logic flow diagrams illustrating exem-
plary aspects of processing a gaming server-initiated server
load balancing request in some embodiments of the OGM,
e.g., a server-initiated load balancing request (“SI-LBR”)
component 900. In some implementations, a gaming server
providing services for user(s)/client(s) may, e.g., be experi-
encing slow service request response times and/or other
adverse performance metrics, and may request, e.g., 901, the
OGM to attempt improving its performance. In some imple-
mentations, a gaming server may recognize another slow
gaming server within the OGM, and may submit a load bal-
ancing request on behalf of the slow gaming server. For
example, a gaming server may provide a load balancing
request to the OGM, e.g., to the load-balancing server. For
example, the gaming server may provide a HT'TP(S) POST
message including XMl -encoded load balancing request
data, similar to the example listing provided below:

POST /loadbalance.php HTTP/1.1

Host: www.appserver.com

Content-Type: Application/XML

Content-Length: 279

<?XML version = “1.0” encoding = “UTF-87?>

<load__balance_ request>
<request__id>CGH382</request__id>
<requestor_type>server</requestor_ type>
<requestor__id>gsl.appserver.com<requestor_ id>
<server__id>gsl.appserver.com<server__id>
<timestamp>2010-05-24 22:14:53</timestamp>

</load__balance_ request>

US 9,403,095 B2

23

The load balancing server may obtain, e.g., 902, the request
from the gaming server, and parse the XML -encoded request
to obtain the load balancing request data. For example, the
load balancing server may utilize PHP commands similar to
the listing provided in the example above. The load balancing
server may obtain an ID or name of the gaming server for
which load balancing is requested, and may query, e.g., 903,
the server load database for the load data pertaining to that
gaming server. For example, the load balancing server may
utilize PHP/SQL commands, similar to the examples pre-
sented previously, to obtain the load data of the identified
gaming server from the server load database. In response, the
server load database may provide, e.g., 904, the requested
server load data which may include, but not be limited to: a
gaming server 1D, number of users being serviced, gaming
user IDs whose requests were serviced, service begin and end
timestamps, memory usage for servicing the user request,
CPU usage for servicing the user requests, average response
time for servicing the user requests, number of page faults for
servicing the user requests, number of swaps for servicing the
user requests, and/or the like. The load balancing server may
also request, e.g., 905, the server load database for load bal-
ancing rules which the load balancing server may utilize to
determine whether the load balancing request is a valid
request. The server load database may provide, e.g., 906,
rules in response to the load balancing server’s request. For
example, the server load database may return an XML-en-
coded load balancing rules file similar to the exemplary list-
ing provided above illustrating load balancing rules. The
server may obtain the load-balancing rules file from the server
load database, and parse, e.g., using PHP commands similar
to the example above, the load balancing rules file to obtain
the load balancing rules. The load balancing server may apply
the rules to the server load data to determine, e.g., 907,
whether the load balancing request is valid. For example, the
load balancing server may apply each load balancing rule to
the server load data, and determine whether any of the rule
outcomes requires that the gaming server-initiated load bal-
ancing request be serviced. If any rule produces such an
outcome, the load balancing server may determine that the
load balancing request is valid. In some implementations, the
load balancing server may determine a priority level for the
load balancing request based on whether the request was
submitted by the server (as opposed to another server, a user
and/or other OGM component), the number ofload balancing
rules that produced an outcome requiring the gaming server-
initiated load balancing request to be serviced, a time of
submission of the load balancing request, etc. If no load
balancing rule produces an outcome that requires the load
balancing request to be serviced (e.g., 908, Option “No”), the
load balancing server may generate a request denied message
(e.g., as a HTTP(S) POST message) for the gaming server,
and may provide troubleshooting routines, e.g., 909, which
the gaming server may utilize, e.g., 810, to identify and solve
the problem. However, if the load balancing server deter-
mines that the gaming server-initiated load balancing request
should be serviced (e.g., 908, Option “Yes”), the load balanc-
ing server may assigned the calculated priority value to the
gaming server-initiated load balancing request, e.g., 911, and
add the gaming server-initiated load balancing request and
the priority value to a server-initiated load balancing queue,
e.g., 912. For example, the load balancing server may utilize
PHP/SQL commands similar to the examples presented pre-
viously to add a record including details of the gaming server-
initiated load balancing request and priority value(s) to the
server-initiated load balancing queue. The load balancing
server may also generate an acknowledgment message, e.g.,

20

25

40

45

24

913, acknowledging that the gaming server-initiated load bal-
ancing request has been accepted, and provide, e.g., 914 the
message, e.g., as a HT'TP(S) POST message, for the gaming
server(s).

FIG. 10 is of a logic flow diagram illustrating exemplary
aspects of processing a self-diagnostic server load balancing
request in some embodiments of the OGM, e.g., a diagnostic
load balancing request (“D-LBR”) component 1000. In some
implementations, the load balancing server may identify
gaming servers that require load balancing by performing
targeted searches through the server load database for over-
burdened gaming servers using performance metrics as
search terms. For example, the load balancing server may
request, e.g., 1001, the server load database for load balanc-
ing rules which the load balancing server may utilize to iden-
tify overburdened gaming servers. The server load database
may provide, e.g., 1002, rules in response to the load balanc-
ing server’s request. For example, the server load database
may return an XML -encoded load balancing rules file similar
to the exemplary listing provided above illustrating load bal-
ancing rules. The server may obtain the load-balancing rules
file from the server load database, and parse, e.g., using PHP
commands similar to the example above, the load balancing
rules file to obtain the load balancing rules. The load balanc-
ing server may then use the rules to generate, e.g., 1003, one
or more queries for gaming servers whose load data satisfy
the conditions included in the rules. For example, if a rule
requires that a gaming server be load-balanced if it is servic-
ing more than 5000 users and its CPU usage is greater than
65%, the load balancing server may generate a PHP/SQL
query with these values as search result restrictors within the
‘num_users’ and ‘cpu_usage’ columns ofthe server load data-
base. In some implementations, the load balancing server
may generate multiple queries to the server load database,
obtain IDs of gaming servers as part of the results of these
queries, e.g., 1004, and then, e.g., obtain IDs of gaming
servers to be load-balanced as an intersection of the search
results from the multiple search queries. The load balancing
server may generate a load-balancing request for each gaming
server thus diagnostically identified as requiring load balanc-
ing, and assign a priority value (e.g., based on the number of
server load database search results in which the gaming server
1D appeared) to each diagnostically-identified load balancing
request, e.g., 1005. The load balancing server may then add
the diagnostically-identified load balancing requests and
their priority values to a diagnostic load balancing queue, e.g.,
1006. For example, the load balancing server may utilize
PHP/SQL commands similar to the examples presented pre-
viously to add a record including details of the diagnostically-
identified load balancing request(s) and priority value(s) to
the diagnostic load balancing queue.

FIG. 11 is of a logic flow diagram illustrating exemplary
aspects of processing server load balancing requests initiated
by various OGM components and/or affiliated entities in
some embodiments of the OGM, e.g., a load-balancing
request aggregator (“LBRA”) component 1100. In some
implementations, the load balancing server may obtain gam-
ing servers identified as requiring load balancing from the
user-initiated load balancing request queue, e.g., 1101, the
server-initiated load balancing request queue, e.g., 1102, and
the diagnostic load balancing request queue, e.g., 1103. The
load balancing server may aggregate, e.g., 1104, the requests
from these sources into a master queue of gaming server [Ds
that require load balancing. The load balancing server may
assign each of the user-initiated, server-initiated, and diag-
nostic load balancing queues with a relative weight. The load
balancing server may then calculate an overall priority value

US 9,403,095 B2

25

for each request in the master queue, using its priority value
obtained from the queue from which it was obtained, as well
as the priority value of the queue itself. The load balancing
server may sort the requests in the master queue in descending
order of the overall priority value. In some implementations,
the load balancing server may, e.g., 1106, optionally, identify
gaming servers that have duplicate requests in the master
queue, and record the requests in a database (e.g., the server
load database). In some implementations, the load balancing
server may, e.g., 1107, optionally delete the duplicate
requests from the master queue.

FIG. 12 is of a logic flow diagram illustrating exemplary
aspects of processing server load balancing requests based on
a user’s social graph and online behavior in some embodi-
ments of the OGM, e.g., a server load balancing (“SLB”)
component 1200. In some implementations, the OGM may
obtain a load balancing queue (e.g., the master queue as
discussed above with reference to FIG. 11) of gaming servers
that require load balancing, e.g., 1201. The OGM may, in
some implementations, serially process the load balancing
requests stored in the load balancing queue. For example, the
OGM may select a request from the load balancing queue. For
example, the load balancing server may issue PHP/SQL com-
mands described previously to retrieve a record having high-
est priority from the load balancing queue. The load balanc-
ing server may parse the record to identify a gaming server for
which load balancing needs to be performed, e.g., 1202. The
OGM may initiate, and perform load balancing, e.g., 1203,
for the identified gaming server, as discussed further below
with reference to FIG. 13. The OGM may wait (e.g., 1204,
Option “No”) until the load balancing of the gaming server is
complete (e.g., 1204, Option “Yes”). Upon obtaining an indi-
cation that the load balancing of the gaming server is com-
plete, the OGM may obtain updated load data for the gaming
server for which load balancing has been completed, e.g.,
1206. For example, the gaming server may issue PHP com-
mands such as those discussed above to obtain performance
metrics (e.g., memory usage, CPU usage, number of page
faults, number of default swaps, etc.), and may provide the
load data to the server load database, e.g., 1207, for example,
via PHP/SQL commands to write/edit a record in the server
load database. Once the gaming server load balancing is
complete (and, in some implementations, the server load
database has been updated with the new server load data), the
OGM may delete the request pertaining to load balancing for
the gaming server from the load balancing queue, e.g., 1208.
If there are any more requests in the load balancing queue
(e.g., 1209, Option “Yes”), the OGM may repeat the above
procedure, until there are no more requests left in the load
balancing queue (e.g., 1209, Option “No’).

FIG. 13 is of a logic flow diagram illustrating exemplary
aspects of transferring users of a gaming server to other
gaming servers based on a user’s social graph and online
behavior in some embodiments of the OGM, e.g., a user
gaming server transfer (“UGST”) component 1300. In some
implementations, the OGM may obtain an indication that a
gaming server requires load balancing, e.g., 1301. The OGM
may obtain a list of users/clients with gaming sessions (e.g.,
as established using User Session Initiation component 500)
established with the gaming server, e.g., 1302, to perform
user migration/transfer to other gaming servers, as part of
load balancing for the identified gaming server. For example,
the load balancing server may query the server load database
for a list of users who have sessions established with the
identified gaming server. The OGM may, in some implemen-
tations, serially process the user migration of users to other
gaming servers for load balancing purposes. For example, the

40

45

50

26

OGM may select, e.g., 1303, a user/client to transfer to
another gaming server from the identified gaming server. For
example, the load balancing server may issue PHP/SQL com-
mands described previously to retrieve a user ID presenting
the highest load on the identified gaming server. In other
implementations, the load balancing server may look for
duplicate load balancing requests pertaining to the identified
gaming server that have been initiated by users, and select
from one of the users who provided the load balancing
request(s) for migration. Upon selecting a user for migration,
the OGM may initiate and perform the gaming server transfer
for the selected user/client, e.g., 1304, as discussed further
below with reference to FIG. 14. The OGM may wait (e.g.,
1305, Option “No”) until the transfer of the selected user to
another gaming server is complete (e.g., 1305, Option “Yes™).
Upon obtaining an indication that the user migration to
another gaming server is complete, the OGM may obtain
updated load data for the gaming servers from and to which
the user was transferred, e.g., 1307. For example, the gaming
server may issue PHP commands such as those discussed
above to obtain performance metrics (e.g., memory usage,
CPU usage, number of page faults, number of default swaps,
etc.), and may provide the load data for the gaming servers to
the server load database, e.g., 1308, for example, via PHP/
SQL commands to write/edit record(s) in the server load
database. Once the user migration is complete and the server
load database has been updated with the new server load data,
the OGM may analyze the updated gaming server load data,
e.g., 1309, to determine whether further user migrations are
required. For example, the load balancing server may obtain
the load balancing rules from the server load database and
apply the rules to the server load data to determine whether
any rules produces an outcome requiring load balancing for
the gaming server, as discussed previously. If additional
server transfers for users are not needed (e.g., 1310, option
“No”), then the OGM may end the load balancing procedure
for the identified gaming server. If, however, additional server
transfer for users are needed (e.g., 1310, option “Yes”), the
OGM may repeat the above procedure until the OGM deter-
mines that further server transfers for users away from the
identified gaming server are not needed.

FIGS. 14A-C are of logic flow diagrams illustrating exem-
plary aspects of migrating a user from one server to another
based on a user’s social graph and online behavior in some
embodiments of the OGM, e.g., a user migration (“UM”)
component 1400. In some implementations, the OGM may be
triggered, e.g., 1401, to migrate a user away from one gaming
server to an alternate gaming server within the OGM. The
load balancing server may obtain, e.g., 1402, a user ID of the
user to be migrated, and the ID of the gaming server away
from which the user is to be migrated (“gaming server—A”).
The OGM may, in response to the trigger, attempt to deter-
mine a transfer server to which to migrate the user using the
social relationship and online behavioral data of the user. For
example, the load balancing server may query, e.g., 1403, a
social graph database for the user’s social activity data and/or
social graph (e.g., using PHP/SQL commands, via an appli-
cation programming interface call to a social networking
service, etc.), as discussed previously with reference to FIG.
4. In response, the social graph database and/or social net-
working service may provide, e.g., 1404, user social graph
data including, but not limited to: friend IDs, friend relation-
ship strength(s), flags for whether the co-users are gamer
friends and/or social networking friends, and/or the like, to
the load balancing server, e.g., 1405. In some implementa-
tions, the load balancing server may identify co-users using
the gaming session state of the user. The load balancing server

US 9,403,095 B2

27

may request and obtain, e.g., 1406-1408, the user session
state from the gaming realm database associated with gaming
server—A (“gaming realm database—A”). The load balanc-
ing server may identify a game 1D of the game being played
by the user, and may query the gaming realm database of the
OGM for user IDs of other users playing the same game with
the user. The load balancing server may aggregate the results
for co-users from the queries for the social graph data and
from analyzing user IDs in the gaming realm databases to
create a list of identified co-users, e.g., 1409, of the user for
which server transfer is being performed. The load balancing
server may utilize the user IDs of the co-users to generate
search queries for candidate transfer servers for the user. For
example, the load balancing server may obtain load balancing
rules from the server load database, e.g., as discussed previ-
ously using PHP/SQL commands issued to the server load
database. The load balancing server may then utilize the rules
to generate search queries that identify, e.g., 1410, servers
that host at least one of the identified co-users and are not
overloaded (similar to the discussion previously where the
load balancing server identified overloaded gaming servers
using targeted search queries. The load balancing server may
aggregate the results of the search queries, e.g., 1411, to
generate a list of transfer candidate servers to which the OGM
may migrate the user. Using the list of identified co-users and
the list of transfer candidate servers, the OGM may identify a
transfer server (“gaming server—B”), e.g., 1412, to transfer
the user, e.g., using the example Server Transfer Selection
component 1500 discussed further below with reference to
FIG. 15.

Upon identifying the gaming server—B to transfer the user
to, the load balancing server may execute a procedure similar
to that followed when initiating a new user session, such as
described with reference to FIG. 4. For example, the load
balancing server may provide a user transfer request, e.g.,
1413, to the identified gaming server—B. The gaming
server—B may receive the load balancing server’s user trans-
fer request, and may provide a user transfer acknowledgment
(e.g., 1415, option “Yes”) to the load balancing server. If the
gaming server—B rejects the transfer of the user, the OGM
may repeat the procedure to identify a transfer server to
transfer the user to (e.g., 1412). Upon accepting the user
transfer, the gaming server—B may generate freeze and/or
transfer orders, e.g., 1416, freeze and/or transfer orders to
inform the client to temporarily suspend initiation of commu-
nication with the gaming servers A and B (e.g., only accept
incoming communication from the servers) while the user
transfer takes place between the gaming server—A and the
gaming server—B, and/or to communicate with the gaming
server—B, rather than the gaming server—A, upon resump-
tion of communication. The OGM may then initiate the user
transfer from gaming server—A to the gaming server—B.
The load balancing server may provide access rights, e.g.,
1417, to the gaming server—B to communicate with the
gaming server—A and/or the gaming realm database—A
associated with gaming server—A. The gaming server—B,
e.g., 1418, may provide a request for the user’s session state
from the gaming realm database—A associated with the gam-
ing server—A, for example, using PHP/SQL commands
similar to examples provided above. In response, the gaming
realm database—A may provide, e.g., 1419, the request user
session state to the gaming server—B, e.g., 1420. The gaming
server—B may then store the user session state, e.g., 1421, in
its gaming realm database—B. The gaming server—B may
then generate, e.g., 1422, a socket connection with the client,
e.g., with an Adobe® Flash object running on the client, as
illustrated in examples above. The gaming server—B may

10

15

20

25

30

35

40

45

50

55

60

65

28

provide, e.g., 1423 the details of the session with the user to
the server load database, e.g., along with a snapshot of’its load
data taken before and/or after creating the session with the
user. The gaming server—B may also provide an acknowl-
edgment that the user transfer was successful and/or provide
instructions, e.g., 1424, to the gaming server—A to end its
session with the user. Upon receiving the acknowledgment/
instructions, the gaming server—A may delete, e.g., 1425, its
session with the user and update its gaming realm database,
and provide an updated server load data to the server load
database, e.g., 1426. The gaming server—B may, e.g., 1427,
write freeze and/or transfer orders to the client (e.g., via the
socket connection to the Adobe Flash® object using PHP
commands similar to examples above). In response, the client
may unfreeze the app, e.g., 1428, and resume communication
with the server components, e.g., with the gaming server—B.
For example, the client may allow the user to provide execute
procedures similar to of the example User Gaming Interac-
tion component 600 such as described in FIG. 6.

FIG. 15 is of a logic flow diagram illustrating exemplary
aspects of selecting a server to which to migrate a user based
on the user’s social graph and online behavior in some
embodiments of the OGM, e.g., a server transfer selection
(“STS”) component 1500. In the some implementations, the
OGM and/or its affiliated components (e.g., load balancing
server) may obtain, e.g., 1501, a list of co-users of a user to be
migrated and a list of candidate transfer servers to which the
user may be migrated from a current gaming server of the
user. The OGM may calculate transfer candidate server
scores for each of the candidate transfer servers, using data on
the social relationships of the user and the co-users, as well as
the online behavior of the user and the co-users. The OGM
may select a co-user, e.g., 1502, and calculate the strength of
the co-user’s relationship with the migrating user. For
example, the initial weight/strength of the co-user’s relation-
ship with the user may be setto 1, e.g., 1503, by default. The
OGM may determine whether the co-user and the user are
connected via a multi-user network application (e.g., are they
explicitly defined as friends in the social graph of user asso-
ciated with a social networking site such as Facebook®?) If
the OGM determines that they are connected (e.g., number of
nodes between their nodes on social graph is less then, say, 3)
on a multi-user network application, then the OGM may
increase the weight of the co-user relationship, e.g., in 1501,
to value W1. The OGM may assign an additional weight, say
W2, if there is a direct friend relationship between the user
and the co-user (e.g., 1506-1508).

In some implementations, the OGM may obtain a historical
log of their online social behavior (e.g., a 6-month log of their
social activities, and their social activity patterns from a social
networking site such as Facebook®, Twitter®, etc.) and/or
online gaming behavior (e.g., a 4-month log of their gaming
activities on online games such as Farmville, Fishville, Mafia
Wars, etc.). The OGM may utilize their online behavior to
determine, e.g., whether they are online at the same times,
and/or whether they enjoy the same activities. In some imple-
mentations, the OGM may consider other indications of
implicit relationship, common interests, similar online
behavior, and/or the like. In some implementations, the OGM
may generate a time-activity histogram for each user. For
example, the OGM may generate a two-dimensional graph
with period of time (e.g., 0-6 months) on the x-axis, and
amount of online activity (e.g., number of posts to a social
networking sites, number of tweets, average number of key-
strokes within an online game, amount of time logged-in to
social networking and/or gaming website, etc.) on the y-axis,
using the online social and gaming activity patterns of the

US 9,403,095 B2

29

user and the co-user. The OGM may then calculate a corre-
lation of' the time-activity functions of the user and the co-user
to determine how well correlated the online activity times of
the user and the co-user. For example, using the correlation
between the time-activity functions of the user and the co-
user, the OGM may calculate an online activity overlap time
(“time_overlap™) for the user and the co-user, representing
the average amount of time in a day that the user and co-user
are online simultaneously, e.g., 1509. In some implementa-
tions, the OGM may generate a type-activity histogram for
each user. For example, the OGM may generate a two-dimen-
sional graph with type of activity (e.g., tweeting, posting on
social networking site, playing game 1, playing game 2, etc.)
on the x-axis, and amount of online activity (e.g., number of
posts to a social networking sites, number of tweets, average
number of keystrokes within an online game, amount of time
logged-in to social networking and/or gaming website, etc.)
on the y-axis, using the online social and gaming activity
patterns of the user and the co-user. The OGM may then
calculate a correlation of the type-activity functions of the
user and the co-user to determine how well correlated the
preferences for specific online activities are for the user and
the co-user. For example, using the correlation between the
type-activity functions of the user and the co-user, the OGM
may calculate an online activity preference overlap (“ty-
pe_overlap”) for the user and the co-user, representing a
degree to which the user and co-user both prefer the same
online social and/or gaming activities, e.g., 1510.

In some implementations, the OGM may select, e.g., 1511
a transfer candidate server from the list of transfer candidate
servers, and add to its overall score, a score that is based on
parameters such as those calculated above for the user and the
co-user. For example, the OGM may select a gaming server
that hosts the co-user as the transfer candidate server to whose
overall score the calculated score will be added. If the co-user
is not a gaming co-user, in some implementations, the OGM
may select at random a server from among the transfer can-
didate servers to which to credit the calculate score. Upon
selecting the transfer candidate server to which to credit the
score, the OGM may (re)calculate, e.g., 1512, the overall
score of the selected transfer candidate server using a score
based on the co-user weight, direct friend weight, time over-
lap, type overlap and/or other like parameters that may be
calculated by the OGM. It is to be understood that, although
a specific example equation has been provided in FIG. 15,
element 1512, for calculating transfer candidate server
scores, the transfer candidate server scores may be calculated
using any combination of the above-discussed and/or like
parameters, which may utilized in any type of (or combina-
tion of types of) calculations (e.g., addition, subtraction, mul-
tiplication, division, correlation, integration, and/or the like).
The OGM may repeat this procedure until all co-users of the
user have been accounted for (e.g., 1513, option “No”). The
OGM may then select the transfer candidate server with the
highest overall score as the server to which the OGM will
migrate the user.

OGM Controller

FIG. 16 illustrates inventive aspects of a OGM controller
1601 in a block diagram. In this embodiment, the OGM
controller 1601 may serve to aggregate, process, store,
search, serve, identify, instruct, generate, match, and/or
facilitate interactions with a computer through enterprise and
human resource management technologies, and/or other
related data.

15

20

25

30

35

40

45

55

60

30

Typically, users, which may be people and/or other sys-
tems, may engage information technology systems (e.g.,
computers) to facilitate information processing. In turn, com-
puters employ processors to process information; such pro-
cessors 1603 may be referred to as central processing units
(CPU). One form of processor is referred to as a micropro-
cessor. CPUs use communicative circuits to pass binary
encoded signals acting as instructions to enable various
operations. These instructions may be operational and/or data
instructions containing and/or referencing other instructions
and data in various processor accessible and operable areas of
memory 1629 (e.g., registers, cache memory, random access
memory, etc.). Such communicative instructions may be
stored and/or transmitted in batches (e.g., batches of instruc-
tions) as programs and/or data components to facilitate
desired operations. These stored instruction codes, e.g., pro-
grams, may engage the CPU circuit components and other
motherboard and/or system components to perform desired
operations. One type of program is a computer operating
system, which, may be executed by CPU on a computer; the
operating system enables and facilitates users to access and
operate computer information technology and resources.
Some resources that may be employed in information tech-
nology systems include: input and output mechanisms
through which data may pass into and out of a computer;
memory storage into which data may be saved; and proces-
sors by which information may be processed. These informa-
tion technology systems may be used to collect data for later
retrieval, analysis, and manipulation, which may be facili-
tated through a database program. These information tech-
nology systems provide interfaces that allow users to access
and operate various system components.

In one embodiment, the OGM controller 1601 may be
connected to and/or communicate with entities such as, but
not limited to: one or more users from user client devices
1611; peripheral devices 1612; an optional cryptographic
processor device 1628; and/or a communications network
1613. For example, the OGM controller 1601 may be con-
nected to and/or communicate with users operating client
device(s) including, but not limited to, personal computer(s),
server(s) and/or various mobile device(s) including, but not
limited to, cellular telephone(s), smartphone(s) (e.g.,
iPhone®, Blackberry®, Android OS-based phones etc.), tab-
let computer(s) (e.g., Apple iPad™, HP Slate™ etc.), eBook
reader(s) (e.g., Amazon Kindle™ etc.), laptop computer(s),
notebook(s), netbook(s), gaming console(s) (e.g., XBOX
Live™, Nintendo® DS etc.), portable scanner(s) and/or the
like.

Networks are commonly thought to comprise the intercon-
nection and interoperation of clients, servers, and intermedi-
ary nodes in a graph topology. It should be noted that the term
“server” as used throughout this application refers generally
to a computer, other device, program, or combination thereof
that processes and responds to the requests of remote users
across a communications network. Servers serve their infor-
mation to requesting “clients.” The term “client” as used
herein refers generally to a computer, program, other device,
user and/or combination thereof that is capable of processing
and making requests and obtaining and processing any
responses from servers across a communications network. A
computer, other device, program, or combination thereof that
facilitates, processes information and requests, and/or fur-
thers the passage of information from a source user to a
destination user is commonly referred to as a “node.” Net-
works are generally thought to facilitate the transfer of infor-
mation from source points to destinations. A node specifically
tasked with furthering the passage of information from a

US 9,403,095 B2

31

source to a destination is commonly called a “router.” There
are many forms of networks such as Local Area Networks
(LANSs), Pico networks, Wide Area Networks (WANs), Wire-
less Networks (WLANS), etc. For example, the Internet is
generally accepted as being an interconnection of a multitude
of networks whereby remote clients and servers may access
and interoperate with one another.

The OGM controller 1601 may be based on computer
systems that may comprise, but are not limited to, compo-
nents such as: a computer systemization 1602 connected to
memory 1629.

Computer Systemization

A computer systemization 1602 may comprise a clock
1630, central processing unit (“CPU(s)” and/or “process-
or(s)” (these terms are used interchangeable throughout the
disclosure unless noted to the contrary)) 1603, a memory
1629 (e.g., a read only memory (ROM) 1606, a random
access memory (RAM) 1605, etc.), and/or an interface bus
1607, and most frequently, although not necessarily, are all
interconnected and/or communicating through a system bus
1604 on one or more (mother)board(s) 1602 having conduc-
tive and/or otherwise transportive circuit pathways through
which instructions (e.g., binary encoded signals) may travel
to effect communications, operations, storage, etc. Option-
ally, the computer systemization may be connected to an
internal power source 1686. Optionally, a cryptographic pro-
cessor 1626 may be connected to the system bus. The system
clock typically has a crystal oscillator and generates a base
signal through the computer systemization’s circuit path-
ways. The clock is typically coupled to the system bus and
various clock multipliers that will increase or decrease the
base operating frequency for other components intercon-
nected in the computer systemization. The clock and various
components in a computer systemization drive signals
embodying information throughout the system. Such trans-
mission and reception of instructions embodying information
throughout a computer systemization may be commonly
referred to as communications. These communicative
instructions may further be transmitted, received, and the
cause of return and/or reply communications beyond the
instant computer systemization to: communications net-
works, input devices, other computer systemizations, periph-
eral devices, and/or the like. Of course, any of the above
components may be connected directly to one another, con-
nected to the CPU, and/or organized in numerous variations
employed as exemplified by various computer systems.

The CPU comprises at least one high-speed data processor
adequate to execute program components for executing user
and/or system-generated requests. Often, the processors
themselves will incorporate various specialized processing
units, such as, but not limited to: integrated system (bus)
controllers, memory management control units, floating
point units, and even specialized processing sub-units like
graphics processing units, digital signal processing units,
and/or the like. Additionally, processors may include internal
fast access addressable memory, and be capable of mapping
and addressing memory 1629 beyond the processor itself;
internal memory may include, but is not limited to: fast reg-
isters, various levels of cache memory (e.g., level 1,2, 3, etc.),
RAM, etc. The processor may access this memory through
the use of a memory address space that is accessible via
instruction address, which the processor can construct and
decode allowing it to access a circuit path to a specific
memory address space having a memory state. The CPU may
be a microprocessor such as: AMD’s Athlon, Duron and/or

10

15

20

25

30

35

40

45

50

55

60

65

32

Opteron; ARM’s application, embedded and secure proces-
sors; IBM and/or Motorola’s DragonBall and PowerPC;
IBM’s and Sony’s Cell processor; Intel’s Celeron, Core (2)
Duo, Itanium, Pentium, Xeon, and/or XScale; and/or the like
processor(s). The CPU interacts with memory through
instruction passing through conductive and/or transportive
conduits (e.g., (printed) electronic and/or optic circuits) to
execute stored instructions (i.e., program code) according to
conventional data processing techniques. Such instruction
passing facilitates communication within the OGM controller
and beyond through various interfaces. Should processing
requirements dictate a greater amount speed and/or capacity,
distributed processors (e.g., Distributed OGM), mainframe,
multi-core, parallel, and/or super-computer architectures
may similarly be employed. Alternatively, should deploy-
ment requirements dictate greater portability, smaller Per-
sonal Digital Assistants (PDAs) may be employed.

Depending on the particular implementation, features of
the OGM may be achieved by implementing a microcontrol-
ler such as CAST’s R8051XC2 microcontroller; Intel’s MCS
51 (i.e., 8051 microcontroller); and/or the like. Also, to imple-
ment certain features of the OGM, some feature implemen-
tations may rely on embedded components, such as: Appli-
cation-Specific Integrated Circuit (“ASIC”), Digital Signal
Processing (“DSP”), Field Programmable Gate Array
(“FPGA”), and/or the like embedded technology. For
example, any of the OGM component collection (distributed
or otherwise) and/or features may be implemented via the
microprocessor and/or via embedded components; e.g., via
ASIC, coprocessor, DSP, FPGA, and/or the like. Alternately,
some implementations of the OGM may be implemented
with embedded components that are configured and used to
achieve a variety of features or signal processing.

Depending on the particular implementation, the embed-
ded components may include software solutions, hardware
solutions, and/or some combination of both hardware/soft-
ware solutions. For example, OGM features discussed herein
may be achieved through implementing FPGAs, which are a
semiconductor devices containing programmable logic com-
ponents called “logic blocks”, and programmable intercon-
nects, such as the high performance FPGA Virtex series and/
or the low cost Spartan series manufactured by Xilinx. Logic
blocks and interconnects can be programmed by the customer
or designer, after the FPGA is manufactured, to implement
any of the OGM features. A hierarchy of programmable inter-
connects allow logic blocks to be interconnected as needed by
the OGM system designer/administrator, somewhat like a
one-chip programmable breadboard. An FPGA’s logic
blocks can be programmed to perform the function of basic
logic gates such as AND, and XOR, or more complex com-
binational functions such as decoders or simple mathematical
functions. In most FPGAs, the logic blocks also include
memory elements, which may be simple flip-flops or more
complete blocks of memory. In some circumstances, the
OGM may be developed on regular FPGAs and then migrated
into a fixed version that more resembles ASIC implementa-
tions. Alternate or coordinating implementations may
migrate OGM controller features to a final ASIC instead of or
in addition to FPGAs. Depending on the implementation all
of the aforementioned embedded components and micropro-
cessors may be considered the “CPU” and/or “processor” for
the OGM.

Power Source

The power source 1686 may be of any standard form for
powering small electronic circuit board devices such as the

US 9,403,095 B2

33

following power cells: alkaline, lithium hydride, lithium ion,
lithium polymer, nickel cadmium, solar cells, and/or the like.
Other types of AC or DC power sources may be used as well.
In the case of solar cells, in one embodiment, the case pro-
vides an aperture through which the solar cell may capture
photonic energy. The power cell 1686 is connected to at least
one of the interconnected subsequent components of the
OGM thereby providing an electric current to all subsequent
components. In one example, the power source 1686 is con-
nected to the system bus component 1604. In an alternative
embodiment, an outside power source 1686 is provided
through a connection across the /O 1608 interface. For
example, a USB and/or IEEE 1394 connection carries both
data and power across the connection and is therefore a suit-
able source of power.

Interface Adapters

Interface bus(ses) 1607 may accept, connect, and/or com-
municate to a number of interface adapters, conventionally
although not necessarily in the form of adapter cards, such as
but not limited to: input output interfaces (I/O) 1608, storage
interfaces 1609, network interfaces 1610, and/or the like.
Optionally, cryptographic processor interfaces 1627 simi-
larly may be connected to the interface bus. The interface bus
provides for the communications of interface adapters with
one another as well as with other components of the computer
systemization. Interface adapters are adapted for a compat-
ible interface bus. Interface adapters conventionally connect
to the interface bus via a slot architecture. Conventional slot
architectures may be employed, such as, but not limited to:
Accelerated Graphics Port (AGP), Card Bus, (Extended)
Industry Standard Architecture ((E)ISA), Micro Channel
Architecture (MCA), NuBus, Peripheral Component Inter-
connect (Extended) (PCI(X)), PCI Express, Personal Com-
puter Memory Card International Association (PCMCIA),
and/or the like.

Storage interfaces 1609 may accept, communicate, and/or
connect to a number of storage devices such as, but not
limited to: storage devices 1614, removable disc devices,
and/or the like. Storage interfaces may employ connection
protocols such as, but not limited to: (Ultra) (Serial)
Advanced Technology Attachment (Packet Interface) ((Ultra)
(Serial) ATA(PI)), (Enhanced) Integrated Drive Electronics
((E)IDE), Institute of Electrical and Electronics Engineers
(IEEE) 1394, fiber channel, Small Computer Systems Inter-
face (SCSI), Universal Serial Bus (USB), and/or the like.

Network interfaces 1610 may accept, communicate, and/or
connect to a communications network 1613. Through a com-
munications network 1613, the OGM controller is accessible
through remote clients 16335 (e.g., computers with web
browsers) by users 1633a. Network interfaces may employ
connection protocols such as, but not limited to: direct con-
nect, Ethernet (thick, thin, twisted pair 10/100/1000 Base T,
and/or the like), Token Ring, wireless connection such as
IEEE 802.11a-x, and/or the like. Should processing require-
ments dictate a greater amount speed and/or capacity, distrib-
uted network controllers (e.g., Distributed OGM), architec-
tures may similarly be employed to pool, load balance, and/or
otherwise increase the communicative bandwidth required by
the OGM controller. A communications network may be any
one and/or the combination of the following: a direct inter-
connection; the Internet; a Local Area Network (LAN); a
Metropolitan Area Network (MAN); an Operating Missions
as Nodes on the Internet (OMNI); a secured custom connec-
tion; a Wide Area Network (WAN); a wireless network (e.g.,
employing protocols such as, but not limited to a Wireless

10

15

20

25

30

35

40

45

50

55

60

65

34

Application Protocol (WAP), I-mode, and/or the like); and/or
the like. A network interface may be regarded as a specialized
form of an input output interface. Further, multiple network
interfaces 1610 may be used to engage with various commu-
nications network types 1613. For example, multiple network
interfaces may be employed to allow for the communication
over broadcast, multicast, and/or unicast networks.

Input Output interfaces (/O) 1608 may accept, communi-
cate, and/or connect to user input devices 1611, peripheral
devices 1612, cryptographic processor devices 1628, and/or
the like. [/O may employ connection protocols such as, but
not limited to: audio: analog, digital, monaural, RCA, stereo,
and/or the like; data: Apple Desktop Bus (ADB), IEEE
1394a-b, serial, universal serial bus (USB); infrared; joystick;
keyboard; midi; optical; PC AT; PS/2; parallel; radio; video
interface: Apple Desktop Connector (ADC), BNC, coaxial,
component, composite, digital, Digital Visual Interface
(DVI), high-definition multimedia interface (HDMI), RCA,
RF antennae, S-Video, VGA, and/or the like; wireless:
802.11a/b/g/n/x, Bluetooth, code division multiple access
(CDMA), global system for mobile communications (GSM),
WiMax, etc.; and/or the like. One typical output device may
include a video display, which typically comprises a Cathode
Ray Tube (CRT) or Liquid Crystal Display (LCD) based
monitor with an interface (e.g., DVI circuitry and cable) that
accepts signals from a video interface, may be used. The
video interface composites information generated by a com-
puter systemization and generates video signals based on the
composited information in a video memory frame. Another
output device is a television set, which accepts signals from a
video interface. Typically, the video interface provides the
composited video information through a video connection
interface that accepts a video display interface (e.g., an RCA
composite video connector accepting an RCA composite
video cable; a DVI connector accepting a DVI display cable,
etc.).

User input devices 1611 may be card readers, dongles,
finger print readers, gloves, graphics tablets, joysticks, key-
boards, mouse (mice), remote controls, retina readers, track-
balls, trackpads, and/or the like.

Peripheral devices 1612 may be connected and/or commu-
nicate to I/O and/or other facilities of the like such as network
interfaces, storage interfaces, and/or the like. Peripheral
devices may be audio devices, cameras, dongles (e.g., for
copy protection, ensuring secure transactions with a digital
signature, and/or the like), external processors (for added
functionality), goggles, microphones, monitors, network
interfaces, printers, scanners, storage devices, video devices,
video sources, visors, and/or the like.

It should be noted that although user input devices and
peripheral devices may be employed, the OGM controller
may be embodied as an embedded, dedicated, and/or moni-
tor-less (i.e., headless) device, wherein access would be pro-
vided over a network interface connection.

Cryptographic units such as, but not limited to, microcon-
trollers, processors 1626, interfaces 1627, and/or devices
1628 may be attached, and/or communicate with the OGM
controller. A MC68HC16 microcontroller, manufactured by
Motorola Inc., may be used for and/or within cryptographic
units. The MC68HC16 microcontroller utilizes a 16-bit mul-
tiply-and-accumulate instruction in the 16 MHz configura-
tion and requires less than one second to perform a 512-bit
RSA private key operation. Cryptographic units support the
authentication of communications from interacting agents, as
well as allowing for anonymous transactions. Cryptographic
units may also be configured as part of CPU. Equivalent
microcontrollers and/or processors may also be used. Other

US 9,403,095 B2

35

commercially available specialized cryptographic processors
include: the Broadcom’s CryptoNetX and other Security Pro-
cessors; nCipher’s nShield, SafeNet’s Luna PCI (e.g., 7100)
series; Semaphore Communications’ 40 MHz Roadrunner
184; Sun’s Cryptographic Accelerators (e.g., Accelerator
6000 PCle Board, Accelerator 500 Daughtercard); Via Nano
Processor (e.g.,[.2100, 1.2200, U2400) line, which is capable
of performing 500+ MB/s of cryptographic instructions;
VLSI Technology’s 33 MHz 6868; and/or the like.

Memory

Generally, any mechanization and/or embodiment allow-
ing a processor to affect the storage and/or retrieval of infor-
mation is regarded as memory 1629. However, memory is a
fungible technology and resource, thus, any number of
memory embodiments may be employed in lieu of or in
concert with one another. It is to be understood that the OGM
controller and/or a computer systemization may employ vari-
ous forms of memory 1629. For example, a computer system-
ization may be configured wherein the functionality of on-
chip CPU memory (e.g., registers), RAM, ROM, and any
other storage devices are provided by a paper punch tape or
paper punch card mechanism; of course such an embodiment
would result in an extremely slow rate of operation. In a
typical configuration, memory 1629 will include ROM 1606,
RAM 1605, and a storage device 1614. A storage device 1614
may be any conventional computer system storage. Storage
devices may include a drum; a (fixed and/or removable) mag-
netic disk drive; a magneto-optical drive; an optical drive (i.e.,
Blueray, CD ROM/RAM/Recordable (R)/ReWritable (RW),
DVD R/RW, HD DVD R/RW etc.); an array of devices (e.g.,
Redundant Array of Independent Disks (RAID)); solid state
memory devices (USB memory, solid state drives (SSD),
etc.); other processor-readable storage mediums; and/or other
devices of the like. Thus, a computer systemization generally
requires and makes use of memory.

Component Collection

The memory 1629 may contain a collection of program
and/or database components and/or data such as, but not
limited to: operating system component(s) 1615 (operating
system); information server component(s) 1616 (information
server); user interface component(s) 1617 (user interface);
Web browser component(s) 1618 (Web browser); database(s)
1619; mail server component(s) 1621; mail client compon-
ent(s) 1622; cryptographic server component(s) 1620 (cryp-
tographic server); the OGM component(s) 1635; and/or the
like (i.e., collectively a component collection). These com-
ponents may be stored and accessed from the storage devices
and/or from storage devices accessible through an interface
bus. Although non-conventional program components such
as those in the component collection, typically, are stored in a
local storage device 1614, they may also be loaded and/or
stored in memory such as: peripheral devices, RAM, remote
storage facilities through a communications network, ROM,
various forms of memory, and/or the like.

Operating System

The operating system component 1615 is an executable
program component facilitating the operation of the OGM
controller. Typically, the operating system facilitates access
of 1/0, network interfaces, peripheral devices, storage
devices, and/or the like. The operating system may be a highly
fault tolerant, scalable, and secure system such as: Apple

10

25

40

45

55

60

36

Macintosh OS X (Server); AT&T Nan 9; Be OS; Unix and
Unix-like system distributions (such as AT&T”s UNIX; Berk-
ley Software Distribution (BSD) variations such as FreeBSD,
NetBSD, OpenBSD, and/or the like; Linux distributions such
as Red Hat, Ubuntu, and/or the like); and/or the like operating
systems. However, more limited and/or less secure operating
systems also may be employed such as Apple Macintosh OS,
IBM 0OS/2, Microsoft DOS, Microsoft Windows 2000/2003/
3.1/95/98/CE/Millenium/NT/Vista/XP (Server), Palm OS,
and/or the like. An operating system may communicate to
and/or with other components in a component collection,
including itself, and/or the like. Most frequently, the operat-
ing system communicates with other program components,
user interfaces, and/or the like. For example, the operating
system may contain, communicate, generate, obtain, and/or
provide program component, system, user, and/or data com-
munications, requests, and/or responses. The operating sys-
tem, once executed by the CPU, may enable the interaction
with communications networks, data, I/O, peripheral devices,
program components, memory, user input devices, and/or the
like. The operating system may provide communications pro-
tocols that allow the OGM controller to communicate with
other entities through a communications network 1613. Vari-
ous communication protocols may be used by the OGM con-
troller as a subcarrier transport mechanism for interaction,
such as, but not limited to: multicast, TCP/IP, UDP, unicast,
and/or the like.

Information Server

An information server component 1616 is a stored program
component that is executed by a CPU. The information server
may be a conventional Internet information server such as, but
not limited to Apache Software Foundation’s Apache,
Microsoft’s Internet Information Server, and/or the like. The
information server may allow for the execution of program
components through facilities such as Active Server Page
(ASP), ActiveX, (ANSI) (Objective-) C (++), C#
and/or NET, Common Gateway Interface (CGI) scripts,
dynamic (D) hypertext markup language (HTML), FLASH,
Java, JavaScript, Practical Extraction Report Language
(PERL), Hypertext Pre-Processor (PHP), pipes, Python,
wireless application protocol (WAP), WebObjects, and/or the
like. The information server may support secure communi-
cations protocols such as, but not limited to, File Transfer
Protocol (FTP); HyperText Transfer Protocol (HTTP);
Secure Hypertext Transter Protocol (HTTPS), Secure Socket
Layer (SSL), messaging protocols (e.g., America Online
(AOL) Instant Messenger (AIM), Application Exchange
(APEX), ICQ, Internet Relay Chat (IRC), Microsoft Network
(MSN) Messenger Service, Presence and Instant Messaging
Protocol (PRIM), Internet Engineering Task Force’s (IETE’s)
Session Initiation Protocol (SIP), SIP for Instant Messaging
and Presence Leveraging Extensions (SIMPLE), open XML-
based Extensible Messaging and Presence Protocol (XMPP)
(i.e., Jabber or Open Mobile Alliance’s (OMA’s) Instant
Messaging and Presence Service (IMPS)), Yahoo! Instant
Messenger Service, and/or the like. The information server
provides results in the form of Web pages to Web browsers,
and allows for the manipulated generation of the Web pages
through interaction with other program components. After a
Domain Name System (DNS) resolution portion of an HTTP
request is resolved to a particular information server, the
information server resolves requests for information at speci-
fied locations on the OGM controller based on the remainder
of the HTTP request. For example, a request such as http://
123.124.125.126/myInformation.html might have the IP por-

US 9,403,095 B2

37

tion of the request “123.124.125.126” resolved by a DNS
server to an information server at that IP address; that infor-
mation server might in turn further parse the http request for
the “/myInformation.html” portion of the request and resolve
it to a location in memory containing the information “myIn-
formation.html.” Additionally, other information serving pro-
tocols may be employed across various ports, e.g., FTP com-
munications across port 21, and/or the like. An information
server may communicate to and/or with other components in
a component collection, including itself, and/or facilities of
the like. Most frequently, the information server communi-
cates with the OGM database 1619, operating systems, other
program components, user interfaces, Web browsers, and/or
the like.

Access to the OGM database may be achieved through a
number of database bridge mechanisms such as through
scripting languages as enumerated below (e.g., CGI) and
through inter-application communication channels as enu-
merated below (e.g., CORBA, WebObjects, etc.). Any data
requests through a Web browser are parsed through the bridge
mechanism into appropriate grammars as required by the
OGM. In one embodiment, the information server would
provide a Web form accessible by a Web browser. Entries
made into supplied fields in the Web form are tagged as
having been entered into the particular fields, and parsed as
such. The entered terms are then passed along with the field
tags, which act to instruct the parser to generate queries
directed to appropriate tables and/or fields. In one embodi-
ment, the parser may generate queries in standard SQL by
instantiating a search string with the proper join/select com-
mands based on the tagged text entries, wherein the resulting
command is provided over the bridge mechanism to the OGM
as a query. Upon generating query results from the query, the
results are passed over the bridge mechanism, and may be
parsed for formatting and generation of a new results Web
page by the bridge mechanism. Such a new results Web page
is then provided to the information server, which may supply
it to the requesting Web browser.

Also, an information server may contain, communicate,
generate, obtain, and/or provide program component, system,
user, and/or data communications, requests, and/or
responses.

User Interface

The function of computer interfaces in some respects is
similar to automobile operation interfaces. Automobile
operation interface elements such as steering wheels, gear-
shifts, and speedometers facilitate the access, operation, and
display of automobile resources, functionality, and status.
Computer interaction interface elements such as check boxes,
cursors, menus, scrollers, and windows (collectively and
commonly referred to as widgets) similarly facilitate the
access, operation, and display of data and computer hardware
and operating system resources, functionality, and status.
Operation interfaces are commonly called user interfaces.
Graphical user interfaces (GUIs) such as the Apple Macin-
tosh Operating System’s Aqua, IBM’s OS/2, Microsoft’s
Windows 2000/2003/3.1/95/98/CE/Millenium/NT/XP/
Vista/7 (i.e., Aero), Unix’s X-Windows (e.g., which may
include additional Unix graphic interface libraries and layers
such as K Desktop Environment (KDE), mythTV and GNU
Network Object Model Environment (GNOME)), web inter-
face libraries (e.g., ActiveX, AJAX, (D)HTML, FLASH,
Java, JavaScript, etc. interface libraries such as, but not lim-
ited to, Dojo, jQuery(UI), MooTools, Prototype, script.acu-
lo.us, SWFObject, Yahoo! User Interface, any of which may

35

40

45

38

be used and) provide a baseline and means of accessing and
displaying information graphically to users.

A user interface component 1617 is a stored program com-
ponent that is executed by a CPU. The user interface may be
a conventional graphic user interface as provided by, with,
and/or atop operating systems and/or operating environments
such as already discussed. The user interface may allow for
the display, execution, interaction, manipulation, and/or
operation of program components and/or system facilities
through textual and/or graphical facilities. The user interface
provides a facility through which users may affect, interact,
and/or operate a computer system. A user interface may com-
municate to and/or with other components in a component
collection, including itself, and/or facilities of the like. Most
frequently, the user interface communicates with operating
systems, other program components, and/or the like. The user
interface may contain, communicate, generate, obtain, and/or
provide program component, system, user, and/or data com-
munications, requests, and/or responses.

Web Browser

A Web browser component 1618 is a stored program com-
ponent that is executed by a CPU. The Web browser may be a
conventional hypertext viewing application such as
Microsoft Internet Explorer or Netscape Navigator. Secure
Web browsing may be supplied with 128 bit (or greater)
encryption by way of HTTPS, SSL, and/or the like. Web
browsers allowing for the execution of program components
through facilities such as ActiveX, AJAX, (D)HTML,
FLASH, Java, JavaScript, web browser plug-in APIs (e.g.,
FireFox, Safari Plug-in, and/or the like APIs), and/or the like.
Web browsers and like information access tools may be inte-
grated into PDAs, cellular telephones, and/or other mobile
devices. A Web browser may communicate to and/or with
other components in a component collection, including itself,
and/or facilities of the like. Most frequently, the Web browser
communicates with information servers, operating systems,
integrated program components (e.g., plug-ins), and/or the
like; e.g., it may contain, communicate, generate, obtain,
and/or provide program component, system, user, and/or data
communications, requests, and/or responses. Of course, in
place of a Web browser and information server, a combined
application may be developed to perform similar functions of
both. The combined application would similarly affect the
obtaining and the provision of information to users, user
agents, and/or the like from the OGM enabled nodes. The
combined application may be nugatory on systems employ-
ing standard Web browsers.

Mail Server

A mail server component 1621 is a stored program com-
ponent that is executed by a CPU 1603. The mail server may
be a conventional Internet mail server such as, but not limited
to sendmail, Microsoft Exchange, and/or the like. The mail
server may allow for the execution of program components
through facilities such as ASP, ActiveX, (ANSI) (Objective-)
C (+4), C# and/or NET, CGI scripts, Java, JavaScript, PERL,
PHP, pipes, Python, WebObjects, and/or the like. The mail
server may support communications protocols such as, but
not limited to: Internet message access protocol (IMAP),
Messaging Application Programming Interface (MAPI)/Mi-
crosoft Exchange, post office protocol (POPS), simple mail
transfer protocol (SMTP), and/or the like. The mail server can

US 9,403,095 B2

39

route, forward, and process incoming and outgoing mail mes-
sages that have been sent, relayed and/or otherwise traversing
through and/or to the OGM.

Access to the OGM mail may be achieved through a num-
ber of APIs offered by the individual Web server components
and/or the operating system.

Also, a mail server may contain, communicate, generate,
obtain, and/or provide program component, system, user,
and/or data communications, requests, information, and/or
responses.

Mail Client

A mail client component 1622 is a stored program compo-
nent that is executed by a CPU 1603. The mail client may be
a conventional mail viewing application such as Apple Mail,
Microsoft Entourage, Microsoft Outlook, Microsoft Outlook
Express, Mozilla, Thunderbird, and/or the like. Mail clients
may support a number of transfer protocols, such as: IMAP,
Microsoft Exchange, POP3, SMTP, and/or the like. A mail
client may communicate to and/or with other components in
a component collection, including itself, and/or facilities of
the like. Most frequently, the mail client communicates with
mail servers, operating systems, other mail clients, and/or the
like; e.g., it may contain, communicate, generate, obtain,
and/or provide program component, system, user, and/or data
communications, requests, information, and/or responses.
Generally, the mail client provides a facility to compose and
transmit electronic mail messages.

Cryptographic Server

A cryptographic server component 1620 is a stored pro-
gram component that is executed by a CPU 1603, crypto-
graphic processor 1626, cryptographic processor interface
1627, cryptographic processor device 1628, and/or the like.
Cryptographic processor interfaces will allow for expedition
of encryption and/or decryption requests by the crypto-
graphic component; however, the cryptographic component,
alternatively, may run on a conventional CPU. The crypto-
graphic component allows for the encryption and/or decryp-
tion of provided data. The cryptographic component allows
for both symmetric and asymmetric (e.g., Pretty Good Pro-
tection (PGP)) encryption and/or decryption. The crypto-
graphic component may employ cryptographic techniques
such as, but not limited to: digital certificates (e.g., X.509
authentication framework), digital signatures, dual signa-
tures, enveloping, password access protection, public key
management, and/or the like. The cryptographic component
will facilitate numerous (encryption and/or decryption) secu-
rity protocols such as, but not limited to: checksum, Data
Encryption Standard (DES), Elliptical Curve Encryption
(ECC), International Data Encryption Algorithm (IDEA),
Message Digest 5 (MDS, which is a one way hash function),
passwords, Rivest Cipher (RC5), Rijndael, RSA (which is an
Internet encryption and authentication system that uses an
algorithm developed in 1977 by Ron Rivest, Adi Shamir, and
Leonard Adleman), Secure Hash Algorithm (SHA), Secure
Socket Layer (SSL), Secure Hypertext Transfer Protocol
(HTTPS), and/or the like. Employing such encryption secu-
rity protocols, the OGM may encrypt all incoming and/or
outgoing communications and may serve as node within a
virtual private network (VPN) with a wider communications
network. The cryptographic component facilitates the pro-
cess of “security authorization” whereby access to a resource
is inhibited by a security protocol wherein the cryptographic
component effects authorized access to the secured resource.

10

15

20

25

30

35

40

45

50

55

60

65

40

In addition, the cryptographic component may provide
unique identifiers of content, e.g., employing and MD5 hash
to obtain a unique signature for an digital audio file. A cryp-
tographic component may communicate to and/or with other
components in a component collection, including itself, and/
or facilities of the like. The cryptographic component sup-
ports encryption schemes allowing for the secure transmis-
sion of information across a communications network to
enable the OGM component to engage in secure transactions
if so desired. The cryptographic component facilitates the
secure accessing of resources on the OGM and facilitates the
access of secured resources on remote systems; i.e., it may act
as a client and/or server of secured resources. Most fre-
quently, the cryptographic component communicates with
information servers, operating systems, other program com-
ponents, and/or the like. The cryptographic component may
contain, communicate, generate, obtain, and/or provide pro-
gram component, system, user, and/or data communications,
requests, and/or responses.

The OGM Database

The OGM database component 1619 may be embodied in
a database and its stored data. The database is a stored pro-
gram component, which is executed by the CPU; the stored
program component portion configuring the CPU to process
the stored data. The database may be a conventional, fault
tolerant, relational, scalable, secure database such as Oracle
or Sybase. Relational databases are an extension of a flat file.
Relational databases consist of a series of related tables. The
tables are interconnected via a key field. Use of the key field
allows the combination of the tables by indexing against the
key field; i.e., thekey fields act as dimensional pivot points for
combining information from various tables. Relationships
generally identify links maintained between tables by match-
ing primary keys. Primary keys represent fields that uniquely
identify the rows of a table in a relational database. More
precisely, they uniquely identify rows of a table on the “one”
side of a one-to-many relationship.

Alternatively, the OGM database may be implemented
using various standard data-structures, such as an array, hash,
(linked) list, struct, structured text file (e.g., XML), table,
and/or the like. Such data-structures may be stored in memory
and/or in (structured) files. In another alternative, an object-
oriented database may be used, such as Frontier, ObjectStore,
Poet, Zope, and/or the like. Object databases can include a
number of object collections that are grouped and/or linked
together by common attributes; they may be related to other
object collections by some common attributes. Object-ori-
ented databases perform similarly to relational databases with
the exception that objects are not just pieces of data but may
have other types of functionality encapsulated within a given
object. If the OGM database is implemented as a data-struc-
ture, the use of the OGM database 1619 may be integrated
into another component such as the OGM component 1635.
Also, the database may be implemented as a mix of data
structures, objects, and relational structures. Databases may
be consolidated and/or distributed in countless variations
through standard data processing techniques. Portions of
databases, e.g., tables, may be exported and/or imported and
thus decentralized and/or integrated.

In one embodiment, the database component 1619
includes several tables 1619a-m. A Users table 16194 may
include fields such as, but not limited to: user_ID, ssn, first_
name, last_name, middle_name, suffix, prefix, address_first_
line, address_second_line, city, state, zipcode, country, birth_
date, gender, device_ID_list, device_name_list, device_

US 9,403,095 B2

41

type_list, hardware_configuration_list, software_apps_list,
device_IP_list, device_MAC_list, device_preferences_list,
and/or the like. A Servers table 16195 may include fields such
as, butnot limited to: server_id, server_url, server_ip, server_
type, server_user_limit, server_mem_limit, server_cpu_
limit, and/or the like. An Apps table 1619¢ may include fields
such as, but not limited to: app_ID, app_name, app_type,
app_version, app_version_timestamp, app_prior_version-
s_list, app_prior_versions_timestamps, app_update_sched-
ule, app_scheduled_versions_list, app_scheduled_versions_
dates, app_scheduled_versions_priority, app_enviroment_
type, app_envrionment_version, app_compatibilities_hw,
app_compatibilities_sw, app_dependent_topology_tree,
app_depend_module_list, app_depend_function_list, app_
depend_apps_list, and/or the like. A Client table, 16194, may
include fields such as, but not limited to: user_id, user_name,
client_id, client_type, language_pref, client_hardware_com-
patibilities, client_software_installations, session_port, and/
or the like. A Queues table 1619¢ may include fields such as,
but not limited to: request_ID, request_fields, request_string,
request_origin, request_timestamp, request_priority,
request_queue_ID, num_request_attempts, and/or the like. A
Server Load table 1619 may include fields such as, but not
limited to: server_id, user_id, service_begin_timestamp, ser-
vice_end_timestamp, mem_usage_user, cpu_usage_user,
response_time_user, page_faults_user, num_swaps_user,
avg_swaps, avg_page_faults, avg_response_time, avg_me-
m_usage, avg_cpu_usage, num_users, and/orthelike. A User
Graph table 1619g may include fields such as, but not limited
to: user_id, friend_id, relationship_strength, direct_friend_
weight, gamer_friend_weight, co_user_weight, overlap_
time, overlap_type, and/or the like. An Online Activity table
1619/ may include fields such as, but not limited to: user_id,
friend_id, activity_type, activity_timestamp, activity_prior-
ity, activity_frequency, overlap_time, overlap_type, and/or
the like. A Gaming Realm table 1619i may include fields such
as, but not limited to: app_id, app_name, game_id, player_id,
player_name, mdS5_auth, player_action, player action_
timestamp, card_type, card_value, player_action_type, play-
er_action_amount, player_action_source, and/or the like. A
Load Balancing Request table 1619/ may include fields such
as, but not limited to: request_id, requestor_type, request-
or_id, server_id, request_timestamp, request_priority, and/or
the like. A Load Balancing Rules table 16194 may include
fields such as, but not limited to: inputs_list, inputs_values,
condition_type, condition_string, condition_outputs, out-
put_ flags, condition_thresholds, and/or the like. An Online
Activity table 1619/ may include fields such as, but not lim-
ited to: log_period, activity_type, activity_timestamp, activi-
ty_priority, activity_frequency, time_histogram, type_histo-
gram, and/or the like. A Transfer Server Scoring table 1619m
may include fields such as, but not limited to: scoring_rule-
s_list, scoring_formula, scoring parameters, scoring out-
puts, server_id, and/or the like. One or more of the tables
discussed above may support and/or track multiple entity
accounts on a OGM.

In one embodiment, the OGM database may interact with
other database systems. For example, employing a distributed
database system, queries and data access by search OGM
component may treat the combination of the OGM database,
an integrated data security layer database as a single database
entity.

In one embodiment, user programs may contain various
user interface primitives, which may serve to update the
OGM. Also, various accounts may require custom database
tables depending upon the environments and the types of
clients the OGM may need to serve. It should be noted that

10

15

20

25

30

35

40

45

55

42

any unique fields may be designated as a key field throughout.
In an alternative embodiment, these tables have been decen-
tralized into their own databases and their respective database
controllers (i.e., individual database controllers for each of
the above tables). Employing standard data processing tech-
niques, one may further distribute the databases over several
computer systemizations and/or storage devices. Similarly,
configurations of the decentralized database controllers may
be varied by consolidating and/or distributing the various
database components 1619a-m. The OGM may be configured
to keep track of various settings, inputs, and parameters via
database controllers.

The OGM database may communicate to and/or with other
components in a component collection, including itself, and/
or facilities of the like. Most frequently, the OGM database
communicates with the OGM component, other program
components, and/or the like. The database may contain,
retain, and provide information regarding other nodes and
data.

The OGMs

The OGM component 1635 is a stored program component
that is executed by a CPU. In one embodiment, the OGM
component incorporates any and/or all combinations of the
aspects of the OGM discussed in the previous figures. As
such, the OGM affects accessing, obtaining and the provision
of information, services, transactions, and/or the like across
various communications networks.

The OGM component may transform user social graph and
online behavioral pattern data inputs via various components
into optimized server computational load reports, and/or the
like and use of the OGM. In one embodiment, the OGM
component 1635 takes inputs (e.g., user input 421, graph data
424, server loads 423, gaming app 430, user input 435, envi-
ronment data 437, graph data 446, user input 466, environ-
ment data 468, and/or the like) etc., and transforms the inputs
via various components (e.g., USI 1623q, UGI 16235, UST
1623¢, UI-LBR 16234, SI-LBR 1623¢, D-LBR 1623/, LBRA
1623g, SLB 1623/, UGST 1623;,UM 1623/, and STS 1623%,
and/or the like), into outputs (e.g., gaming app request 422,
user session request 426, user session ACK 427, app query
429, user session state 432, gaming app 433, user output 434,
user session state 432, game input 436, user session state 439,
load stats 440, session state 441, user output 443, server loads
444, user transfer request 448, transfer accept 449, freeze,
transfer orders 451, app freeze order 452, session state
request 454, user session state 455, user session state 456,
user session state 458, transfer ACK 459, session delete order
461, load stats 462, terminate ACK 463, app unfreeze order
464, game input 467, user session state 470, load stats 471,
session state 472, user output 474, and/or the like), as shown
in FIGS. 4A-15, as well as throughout the specification.

The OGM component enabling access of information
between nodes may be developed by employing standard
development tools and languages such as, but not limited to:
Apache components, Assembly, ActiveX, binary executables,
(ANSI) (Objective-) C (++), C#and/or .NET, database adapt-
ers, CGI scripts, Java, JavaScript, mapping tools, procedural
and object oriented development tools, PERL, PHP, Python,
shell scripts, SQL commands, web application server exten-
sions, web development environments and libraries (e.g.,
Microsoft’s ActiveX; Adobe AIR, FLEX & FLASH; AJAX;
(D)HTML; Dojo, Java; JavaScript; jQuery(UI); MooTools;
Prototype; script.aculo.us; Simple Object Access Protocol
(SOAP); SWFObject; Yahoo! User Interface; and/or the like),
WebObjects, and/or the like. In one embodiment, the OGM

US 9,403,095 B2

43

server employs a cryptographic server to encrypt and decrypt
communications. The OGM component may communicate to
and/or with other components in a component collection,
including itself, and/or facilities of the like. Most frequently,
the OGM component communicates with the OGM database,
operating systems, other program components, and/or the
like. The OGM may contain, communicate, generate, obtain,
and/or provide program component, system, user, and/or data
communications, requests, and/or responses.

Distributed OGMs

The structure and/or operation of any of the OGM node
controller components may be combined, consolidated, and/
or distributed in any number of ways to facilitate development
and/or deployment. Similarly, the component collection may
be combined in any number of ways to facilitate deployment
and/or development. To accomplish this, one may integrate
the components into a common code base or in a facility that
can dynamically load the components on demand in an inte-
grated fashion.

The component collection may be consolidated and/or dis-
tributed in countless variations through standard data pro-
cessing and/or development techniques. Multiple instances of
any one of the program components in the program compo-
nent collection may be instantiated on a single node, and/or
across numerous nodes to improve performance through
load-balancing and/or data-processing techniques. Further-
more, single instances may also be distributed across multiple
controllers and/or storage devices; e.g., databases. All pro-
gram component instances and controllers working in concert
may do so through standard data processing communication
techniques. For example, OGM server(s) and database(s)
may all be localized within a single computing terminal. As
another example, the OGM components may be localized
within one or more entities (e.g., hospitals, pharmaceutical
companies etc.) involved in coordinated patient management.

The configuration of the OGM controller will depend on
the context of system deployment. Factors such as, but not
limited to, the budget, capacity, location, and/or use of the
underlying hardware resources may affect deployment
requirements and configuration. Regardless of if the configu-
ration results in more consolidated and/or integrated program
components, results in a more distributed series of program
components, and/or results in some combination between a
consolidated and distributed configuration, data may be com-
municated, obtained, and/or provided. Instances of compo-
nents consolidated into a common code base from the pro-
gram component collection may communicate, obtain, and/
or provide data. This may be accomplished through intra-
application data processing communication techniques such
as, but not limited to: data referencing (e.g., pointers), internal
messaging, object instance variable communication, shared
memory space, variable passing, and/or the like.

If component collection components are discrete, separate,
and/or external to one another, then communicating, obtain-
ing, and/or providing data with and/or to other component
components may be accomplished through inter-application
data processing communication techniques such as, but not
limited to: Application Program Interfaces (API) information
passage; (distributed) Component Object Model (D)COM),
(Distributed) Object Linking and Embedding ((D)OLE), and/
or the like), Common Object Request Broker Architecture
(CORBA), local and remote application program interfaces
Jini, Remote Method Invocation (RMI), SOAP, process
pipes, shared files, and/or the like. Messages sent between
discrete component components for inter-application com-

10

15

20

25

30

35

40

45

50

55

60

65

44

munication or within memory spaces of a singular component
for intra-application communication may be facilitated
through the creation and parsing of a grammar. A grammar
may be developed by using standard development tools such
as lex, yacc, XML, and/or the like, which allow for grammar
generation and parsing functionality, which in turn may form
the basis of communication messages within and between
components. For example, a grammar may be arranged to
recognize the tokens of an HTTP post command, e.g.:
w3c-post http:// . . . Valuel

where Valuel is discerned as being a parameter because
“http://” is part of the grammar syntax, and what follows is
considered part of the post value. Similarly, with such a
grammar, a variable “Valuel” may be inserted into an
“http://”” post command and then sent. The grammar syntax
itself may be presented as structured data that is interpreted
and/or other wise used to generate the parsing mechanism
(e.g., a syntax description text file as processed by lex, yacc,
etc.). Also, once the parsing mechanism is generated and/or
instantiated, it itself may process and/or parse structured data
such as, but not limited to: character (e.g., tab) delineated text,
HTML, structured text streams, XML, and/or the like struc-
tured data. In another embodiment, inter-application data
processing protocols themselves may have integrated and/or
readily available parsers (e.g., the SOAP parser) that may be
employed to parse communications data. Further, the parsing
grammar may be used beyond message parsing, but may also
be used to parse: databases, data collections, data stores,
structured data, and/or the like. Again, the desired configura-
tion will depend upon the context, environment, and require-
ments of system deployment.

In order to address various issues and advance the art, the
entirety of this application for APPARATUSES, METHODS
AND SYSTEMS FOR AN ONLINE GAME MANAGER
(including the Cover Page, Title, Headings, Field, Back-
ground, Summary, Brief Description of the Drawings,
Detailed Description, Claims, Abstract, Figures, Appendices
and/or otherwise) shows, by way of illustration, various
embodiments in which the claimed invention(s) may be prac-
ticed. The advantages and features of the application are of a
representative sample of embodiments only, and are not
exhaustive and/or exclusive. They are presented only to assist
in understanding and teach the claimed principles. It should
be understood that they are not representative of all claimed
inventions. As such, certain aspects of the disclosure have not
been discussed herein. That alternate embodiments may not
have been presented for a specific portion of the invention or
that further undescribed alternate embodiments may be avail-
able for a portion is not to be considered a disclaimer of those
alternate embodiments. It will be appreciated that many of
those undescribed embodiments incorporate the same prin-
ciples of the invention and others are equivalent. Thus, it is to
be understood that other embodiments may be utilized and
functional, logical, organizational, structural and/or topologi-
cal modifications may be made without departing from the
scope and/or spirit of the disclosure. As such, all examples
and/or embodiments are deemed to be non-limiting through-
out this disclosure. Also, no inference should be drawn
regarding those embodiments discussed herein relative to
those not discussed herein other than it is as such for purposes
of reducing space and repetition. For instance, it is to be
understood that the logical and/or topological structure of any
combination of any program components (a component col-
lection), other components and/or any present feature sets as
described in the figures and/or throughout are not limited to a
fixed operating order and/or arrangement, but rather, any
disclosed order is exemplary and all equivalents, regardless of

US 9,403,095 B2

45

order, are contemplated by the disclosure. Furthermore, it is
to be understood that such features are not limited to serial
execution, but rather, any number of threads, processes, ser-
vices, servers, and/or the like that may execute asynchro-
nously, concurrently, in parallel, simultaneously, synchro-
nously, and/or the like are contemplated by the disclosure. As
such, some of these features may be mutually contradictory,
in that they cannot be simultaneously present in a single
embodiment. Similarly, some features are applicable to one
aspect of the invention, and inapplicable to others. In addi-
tion, the disclosure includes other inventions not presently
claimed. Applicant reserves all rights in those presently
unclaimed inventions including the right to claim such inven-
tions, file additional applications, continuations, continua-
tions in part, divisions, and/or the like thereof. As such, it
should be understood that advantages, embodiments,
examples, functional, features, logical, organizational, struc-
tural, topological, and/or other aspects of the disclosure are
not to be considered limitations on the disclosure as defined
by the claims or limitations on equivalents to the claims. It is
to be understood that, depending on the particular needs of the
OGM and/or characteristics of the hardware, software, net-
work framework, monetization model and/or the like, various
embodiments of the OGM may be implemented that enable a
great deal of flexibility and customization. It is to be under-
stood that, depending on the particular needs of the OGM
and/or characteristics of the hardware, software, network
framework, monetization model and/or the like, various
embodiments of the OGM may be implemented that enable a
great deal of flexibility and customization. The instant disclo-
sure discusses example implementations of the OGM within
the context of multi-user social Internet applications. How-
ever, it is to be understood that the system described herein
can be readily configured for a wide range of other applica-
tions and/or implementations. For example, implementations
of'the OGM can be configured to operate within the context of
office collaboration, multinational operations management,
scientific computational resource management, distributed
computing systems, and/or the like. It is to be understood that
the OGM may be further adapted to other implementations.

The invention claimed is:

1. A method, comprising:

receiving a user server migration request for a user having
client data and state associated with a game executed by
acurrent server, wherein user social graph data identifies
co-users and online activity pattern data associated with
the user and the co-users, and server load indices of
servers associated with the co-users and server load
analysis rules are identified;

identifying a subset of the servers as non-overloaded trans-
fer candidate servers by analyzing the server load indi-
ces using the server load analysis rules and calculating a
transfer candidate server score for each of the non-over-
loaded transfer candidate servers using the user social
graph data and the online activity pattern data associated
with the user and the co-users;

selecting, based on the transfer candidate server scores,
one of the non-overloaded transfer candidate servers for
migrating the user;

stopping client-server interaction for the game executed by
the current server and saving the client data and state of
the user associated with the game;

migrating client data and state associated with the user to
the selected non-overloaded transfer candidate server;
and

5

10

15

20

25

30

40

45

46

resuming client-server interaction for the game for execu-
tion at the selected non-overloaded transfer candidate
server using the client data and state.

2. The method of claim 1, wherein calculating the transfer
candidate server scores comprises:

obtaining a co-user relationship strength score for each

co-user associated with one of the non-overloaded trans-
fer candidate servers;

calculating, for each co-user associated with one of the

non-overloaded transfer candidate servers, a co-user
online overlap score using the online activity pattern
data;

calculating, for each co-user associated with one of the

non-overloaded transfer candidate servers, a co-user
weight derived from a product of their co-user online
overlap score and their co-user relationship strength
score; and

calculating, for each non-overloaded transfer candidate

server, its associated transfer candidate server score as a
summation of the co-user weights for each co-user asso-
ciated with the transfer candidate server.

3. The method of claim 2, wherein the co-user relationship
strength scores are included in the user social graph data.

4. The method of claim 2, wherein the co-user relationship
strength scores are calculated using the online activity pattern
data.

5. The method of claim 4, wherein calculating the co-user
relationship strength score for each co-user comprises:

calculating a co-user activity overlap score for each co-user

using the online activity pattern data;

determining whether the user social graph data includes a

relationship strength indicator;

calculating the co-user relationship strength score using

the co-user activity overlap score and the relationship
strength indicator, if it is determined that the user social
graph data includes the relationship strength indicator;
and

providing the co-user activity overlap score as the co-user

relationship strength score, if it is determined that the
user social graph data does not include the relationship
strength indicator.

6. The method of claim 1, wherein the user server migra-
tion request is provided by the user or provided by a server
currently storing the data associated with the user.

7. The method of claim 1, further comprising:

obtaining a server load index of a current server associated

with the user;

analyzing the server load index of the current server using

the server load analysis rules; and

generating the user server migration request based on ana-

lyzing the server load index of the current server.
8. A system, comprising:
a memory; and
a processor disposed in communication with the memory
and configured to issue processing instructions stored in
the memory, wherein the processor executes instructions

receive a user server migration request for a user, and in
response to the request further process user social graph
data identifying co-users, and online activity pattern
data associated with the user and the co-users, and pro-
cess server load indices of servers associated with the
co-users, and server load analysis rules;

identify a subset of the servers as non-overloaded transfer

candidate servers by analyzing the server load indices
using the server load analysis rules;

calculate a transfer candidate server score for each of the

non-overloaded transfer candidate servers using the user

US 9,403,095 B2

47

social graph data and the online activity pattern data
associated with the user and the co-users;

select, based on the transfer candidate server scores, one of

the non-overloaded transfer candidate servers for
migrating the user; and

migrate data associated with the user to the selected non-

overloaded transfer candidate server.

9. The system of claim 8, wherein the instructions to cal-
culate the transfer candidate server scores comprise instruc-
tions to:

obtain a co-user relationship strength score for each co-

user associated with one of the non-overloaded transfer
candidate servers;
calculate, for each co-user associated with one of the non-
overloaded transfer candidate servers, a co-user online
overlap score using the online activity pattern data;

calculate, for each co-user associated with one of the non-
overloaded transfer candidate servers, a co-user weight
derived from a product of their co-user online overlap
score and their co-user relationship strength score; and

calculate, for each non-overloaded transfer candidate
server, its associated transfer candidate server score as a
summation of the co-user weights for each co-user asso-
ciated with the transfer candidate server.

10. The system of claim 8, wherein the co-user relationship
strength scores are included in the user social graph data.

11. The system of claim 8, wherein the co-user relationship
strength scores are calculated using the online activity pattern
data.

12. The system of claim 11, wherein the instructions to
calculate the co-user relationship strength score for each co-
user comprise instructions to:

calculate a co-user activity overlap score for each co-user

using the online activity pattern data;

determine whether the user social graph data includes a

relationship strength indicator;

calculate the co-user relationship strength score using the

co-user activity overlap score and the relationship
strength indicator, if it is determined that the user social
graph data includes the relationship strength indicator;
and

provide the co-user activity overlap score as the co-user

relationship strength score, if it is determined that the
user social graph data does not include the relationship
strength indicator.

10

15

20

25

30

35

40

48

13. The system of claim 8, wherein the user server migra-
tion request is provided by the user.

14. The system of claim 8, wherein the user server migra-
tion request is provided by a server currently storing the data
associated with the user.

15. The system of claim 8, wherein the processor further
issues instructions to:

obtain a server load index of a current server associated

with the user;

analyze the server load index of the current server using the

server load analysis rules; and

generate the user server migration request based on ana-

lyzing the server load index of the current server.

16. A method, comprising:

receiving a server migration request for a user having client

data and state associated with a game executed by a
current server, wherein user social graph data identifies
co-users and online activity pattern data associated with
the user and the co-users;

calculating a transfer candidate server score to identify

non-overloaded transfer candidate servers using the user
social graph data and the online activity pattern data
associated with the user and the co-users;

stopping client-server interaction for the game executed by

the current server and saving the client data and state of
the user associated with the game;
migrating client data and state associated with the user to a
selected non-overloaded transfer candidate server; and

resuming client-server interaction for the game for execu-
tion at the selected non-overloaded transfer candidate
server using the client data and state, wherein the
method is executed by a processor.

17. The method of claim 15, wherein calculating the trans-
fer candidate server scores includes obtain a co-user relation-
ship strength score for each co-user associated with one of the
non-overloaded transfer candidate servers.

18. The method of claim 16, wherein the co-user relation-
ship strength scores are included in the user social graph data.

19. The method of claim 16, wherein the co-user relation-
ship strength scores are calculated using the online activity
pattern data.

